Description
已知一个茶壶中水体积介于 [L,R] [ L , R ] 之间,有两个空杯子,每次可以往一个杯子里倒任意体积的水,但是不知道茶壶中剩余水量,只知道茶壶空没空,要求倒完水之后两个杯子里水的体积差不超过 1 1 ,且茶壶中水的体积不超过,问最少要倒多少次
Input
多组用例,每组用例输入两个整数 L,R(0≤L≤R≤1016) L , R ( 0 ≤ L ≤ R ≤ 10 16 )
Output
输出最少倒水次数
Sample Input
2 2
2 4
Sample Output
1
2
Solution
当 R≤1 R ≤ 1 时,不用倒茶壶中水必然不超过 1 1 ,此时答案为
当 1<R≤2 1 < R ≤ 2 时,往一个杯子里倒 1 1 体积水即可(如果水不够就倒完),这样首先两个杯子水量差值不超过,且剩余水量不超过 1 1 ,此时答案为
当 R>2 R > 2 且 L=0 L = 0 时,此时完全不知道茶壶里的水,只能先给一个杯子里倒一体积水,剩下的 R−1 R − 1 体积水每次往水少的杯子里倒两体积,至多倒 ⌊R−12⌋ ⌊ R − 1 2 ⌋ 次,最后至多剩一体积水,此时答案为 ⌊R−12⌋+1 ⌊ R − 1 2 ⌋ + 1
当 R>2 R > 2 且 L>0 L > 0 且 R−L≤1 R − L ≤ 1 时,往一个杯子里倒 L−12 L − 1 2 体积水,往另一个杯子里倒 L+12 L + 1 2 体积水,这样茶壶里剩余水量不超过 1 1 ,此时答案为
当 R>2 R > 2 且 L>0 L > 0 且 1<R−L≤2 1 < R − L ≤ 2 时,往一个杯子里倒 L+12 L + 1 2 体积水,把剩余的水全部倒入第二个杯子里,这样第二个杯子里的水体积介于区间 (L−12,R−L+12] ( L − 1 2 , R − L + 1 2 ] 之间,而 0<R−L−1≤1 0 < R − L − 1 ≤ 1 ,故两个杯子水体积差值不超过 1 1 ,此时答案为
当 R>2 R > 2 且 L>0 L > 0 且 2<R−L≤3 2 < R − L ≤ 3 时,往一个杯子里倒 L+12 L + 1 2 体积水,往另一个杯子倒 L+32 L + 3 2 体积水,如果不够就全部倒进去,这样两个杯子水体积差值显然不超过 1 1 且茶壶里剩的水体积不超过,此时答案也为 2 2
当且 L>0 L > 0 且 R−L>3 R − L > 3 时,往一个杯子里倒 L+12 L + 1 2 体积水,往另一个杯子里倒 L+32 L + 3 2 体积水,如果不够就全部倒进去,此时显然合法,如果够那么茶壶中剩余水量可能为 [0,R−L−2] [ 0 , R − L − 2 ] ,每次往水少的杯子里倒 2 2 体积水即可,至多倒次即可,最终茶壶里剩余水量不超过 1 1 ,此时答案为
Code
#include<cstdio>
using namespace std;
typedef long long ll;
int main()
{
ll l,r;
while(~scanf("%I64d%I64d",&l,&r))
{
if(r<=1)printf("0\n");
else if(r<=2)printf("1\n");
else if(l==0)printf("%I64d\n",(r-1)/2+1);
else if(r-l<=3)printf("2\n");
else printf("%I64d\n",2+(r-l-2)/2);
}
return 0;
}