Description
给一个 n n 个点条边的无向图,每个点有点权,问是否存在欧拉回路,如果存在则输出所有合法欧拉路径中所经点权值异或和最大的
Input
第一行一整数 T T 表示用例组数,每组用例首先输入两个整数表示点数和边数 ,之后输入 n n 个整数表示这 n n 个点的点权,之后行每行输入两个整数 u,v u , v 表示一条无向边
(1≤n≤105,1≤m≤5⋅105,0≤ai≤104) ( 1 ≤ n ≤ 10 5 , 1 ≤ m ≤ 5 ⋅ 10 5 , 0 ≤ a i ≤ 10 4 )
Output
如果存在欧拉路径则输出所有欧拉路径中所经过点权值异或和最大值,否则输出 Impossible I m p o s s i b l e
Sample Input
2
3 2
3
4
5
1 2
2 3
4 3
1
2
3
4
1 2
2 3
2 4
Sample Output
2
Impossible
Solution
首先判断连通性和奇度点个数,如果不连通或者奇度点数量不是 0 0 或则无解,否则有解,对于两个奇度点的情况,对于点 i i ,假设其度数为,那么 i i 点会被经过次,对于无奇度点的情况,有一个偶度点需要被选出来做起点和终点,也就是说该点会被多经过一次,故拿 ⌊degi+12⌋ ⌊ d e g i + 1 2 ⌋ 的异或和异或上每个点的权值选一个最大值即为答案
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 111111
int T,n,m,fa[maxn],degree[maxn],a[maxn];
void init(int n)
{
for(int i=1;i<=n;i++)fa[i]=i,degree[i]=0;
}
int find(int x)
{
if(fa[x]==x)return x;
return fa[x]=find(fa[x]);
}
void unite(int x,int y)
{
x=find(x),y=find(y);
if(x==y)return ;
fa[x]=y;
}
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
init(n);
while(m--)
{
int u,v;
scanf("%d%d",&u,&v);
degree[u]++,degree[v]++,unite(u,v);
}
int flag=0,cnt=0;
for(int i=1;i<=n;i++)
{
if(fa[i]==i)flag++;
if(degree[i]&1)cnt++;
}
if(flag>1||cnt!=0&&cnt!=2)printf("Impossible\n");
else
{
int ans=0;
for(int i=1;i<=n;i++)
if(((degree[i]+1)/2)&1)ans^=a[i];
if(!cnt)
{
for(int i=1;i<=n;i++)
if(((degree[i]+1)/2)&1)ans=max(ans,ans^a[i]);
}
printf("%d\n",ans);
}
}
return 0;
}