HDU 5883 The Best Path(欧拉回路+并查集)

Description

给一个 n n 个点m条边的无向图,每个点有点权,问是否存在欧拉回路,如果存在则输出所有合法欧拉路径中所经点权值异或和最大的

Input

第一行一整数 T T 表示用例组数,每组用例首先输入两个整数n,m表示点数和边数 ,之后输入 n n 个整数a1,...,an表示这 n n 个点的点权,之后m行每行输入两个整数 u,v u , v 表示一条无向边

(1n105,1m5105,0ai104) ( 1 ≤ n ≤ 10 5 , 1 ≤ m ≤ 5 ⋅ 10 5 , 0 ≤ a i ≤ 10 4 )

Output

如果存在欧拉路径则输出所有欧拉路径中所经过点权值异或和最大值,否则输出 Impossible I m p o s s i b l e

Sample Input

2
3 2
3
4
5
1 2
2 3
4 3
1
2
3
4
1 2
2 3
2 4

Sample Output

2
Impossible

Solution

首先判断连通性和奇度点个数,如果不连通或者奇度点数量不是 0 0 2则无解,否则有解,对于两个奇度点的情况,对于点 i i ,假设其度数为degi,那么 i i 点会被经过degi+12次,对于无奇度点的情况,有一个偶度点需要被选出来做起点和终点,也就是说该点会被多经过一次,故拿 degi+12 ⌊ d e g i + 1 2 ⌋ 的异或和异或上每个点的权值选一个最大值即为答案

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 111111
int T,n,m,fa[maxn],degree[maxn],a[maxn];
void init(int n)
{
    for(int i=1;i<=n;i++)fa[i]=i,degree[i]=0;
}
int find(int x)
{
    if(fa[x]==x)return x;
    return fa[x]=find(fa[x]);
}
void unite(int x,int y)
{
    x=find(x),y=find(y);
    if(x==y)return ;
    fa[x]=y;
}
int main()
{
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)scanf("%d",&a[i]);
        init(n);
        while(m--)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            degree[u]++,degree[v]++,unite(u,v);
        }
        int flag=0,cnt=0;
        for(int i=1;i<=n;i++)
        {
            if(fa[i]==i)flag++;
            if(degree[i]&1)cnt++;
        }
        if(flag>1||cnt!=0&&cnt!=2)printf("Impossible\n");
        else
        {
            int ans=0;
            for(int i=1;i<=n;i++)
                if(((degree[i]+1)/2)&1)ans^=a[i];
            if(!cnt)
            {
                for(int i=1;i<=n;i++)
                    if(((degree[i]+1)/2)&1)ans=max(ans,ans^a[i]);
            }
            printf("%d\n",ans);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值