CodeForces 53 E.Dead Ends(状压DP)

Description

给出一个 n n 个点m条边的无向连通图,问删掉若干边使得该图变成一个恰有 K K 个叶子的树的方案数

Input

第一行三个整数n,m,K表示点数、边数和要求叶子数,之后 m m 行每行两个整数u,v表示一条无向边

(3n10,n1mn(n1)2,2kn1) ( 3 ≤ n ≤ 10 , n − 1 ≤ m ≤ n ( n − 1 ) 2 , 2 ≤ k ≤ n − 1 )

Output

输出方案数

Sample Input

3 3 2
1 2
2 3
1 3

Sample Output

3

Solution

状压,用 n n 个位表示这n个点的存在情况压成一个状态 S S ,以dp[i][j]表示已经选取点集状态为 i i ,其中叶子节点状态为j的方案数,每次选取已选取点集中一点 x x ,对于x的所有邻接点,选出一个不在状态 i i 中的点y,如果 x x 不在叶子状态里,说明加了xy这条边只会多 y y 一个叶子节点,如果x在叶子状态里,说明多 y y 了这个叶子的同时也少了x这个叶子,令 ii=i+2y i i = i + 2 y ,如果 x x 不在状态j中则令 jj=j+2y j j = j + 2 y ,否则令 jj=j2x+2y j j = j − 2 x + 2 y ,那么加 xy x ↔ y 这条边即可把状态 dp[i][j] d p [ i ] [ j ] 变成状态 dp[ii][jj] d p [ i i ] [ j j ] ,进而有转移 dp[ii][jj]+=dp[i][j] d p [ i i ] [ j j ] + = d p [ i ] [ j ] ,但是注意到对于同一个终点状态,由于到达该状态的加边顺序不同使得同一种方案被重复计数,在转移时只要保证 y y jj状态中最大编号的叶子即可避免重复计数,最后对于所有有 K K 个点的叶子状态j,累加 dp[2n1][j] d p [ 2 n − 1 ] [ j ] 即为答案

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=1025;
int n,m,K;
ll dp[maxn][maxn];
vector<int>g[maxn];
int main()
{
    scanf("%d%d%d",&n,&m,&K);
    while(m--)
    {
        int u,v;
        scanf("%d%d",&u,&v);
        u--,v--;
        g[u].push_back(v),g[v].push_back(u);
        dp[(1<<u)^(1<<v)][(1<<u)^(1<<v)]=1;
    }
    int N=1<<n;
    for(int i=1;i<N;i++)
        for(int j=1;j<=i;j++)
            if((i&j)==j&&dp[i][j])
                for(int x=0;x<n;x++)
                    if((i>>x)&1)
                        for(int k=0;k<g[x].size();k++)
                        {
                            int y=g[x][k];
                            if(!((i>>y)&1))
                            {
                                if(((j>>x)&1)&&(j^(1<<x))<(1<<y))dp[i^(1<<y)][j^(1<<x)^(1<<y)]+=dp[i][j];
                                else if(!((j>>x)&1)&&j<(1<<y))dp[i^(1<<y)][j^(1<<y)]+=dp[i][j];
                            }
                        }
    int ans=0;
    for(int i=1;i<N;i++)
    {
        int num=0;
        for(int j=0;j<n;j++)
            if((i>>j)&1)num++;
        if(num==K)ans+=dp[N-1][i];
    }
    printf("%d\n",ans);
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值