CodeForces 70 E.Information Reform(树形DP+Floyd)

61 篇文章 0 订阅
58 篇文章 1 订阅

Description

给出一棵 n n 个节点的树,边权均为1,要求在其中一些点建立信息中转站,距离中转站 len l e n 的点收到信息的代价为 dlen d l e n ,设置一个中转站的代价是 K K ,问如何设置可以使得总代价最小

Input

第一行两个整数n,K表示点数和设置一个中转站的代价,之后输入 n n 个整数d1,...,dn表示不同距离接受信息的代价,最后输入 n1 n − 1 条树边

(1n180,1K105,0di105,didi+1) ( 1 ≤ n ≤ 180 , 1 ≤ K ≤ 10 5 , 0 ≤ d i ≤ 10 5 , d i ≤ d i + 1 )

Output

输出最小代价以及最小代价下每点获取信息的中转站位置

Sample Input

8 10
2 5 9 11 15 19 20
1 4
1 3
1 7
4 6
2 8
2 3
3 5

Sample Output

38
3 3 3 4 3 4 3 3

Solution

dp[u][i] d p [ u ] [ i ] 表示在 i i 点建立一个中转站之后u点以及子树得到信息的代价最小值,令 ans[u] a n s [ u ] 表示使得 dp[u][i] d p [ u ] [ i ] 最小的 i i ,首先跑遍最短路得到任意两点距离最小值dis,那么在不考虑 u u 子树时有dp[u][i]=d[dis[u][i]]+K,之后考虑 u u 儿子节点v,那么对于 v v 而言,要么从ans[v]获取信息,代价为 dp[v][ans[v]] d p [ v ] [ a n s [ v ] ] ,要么从 i i 获取信息,这样的话省去了多建立一个中转站的代价,此时代价为dp[v][i]K,两者选较小值累加到 dp[u][i] d p [ u ] [ i ] 中,在求出所有 dp[u][i] d p [ u ] [ i ] 后即得到 ans[u] a n s [ u ] ,最后 dp[1][ans[1]] d p [ 1 ] [ a n s [ 1 ] ] 即为最小代价和,具体方案只需比较 dp[v][ans[v]] d p [ v ] [ a n s [ v ] ] dp[v][i]K d p [ v ] [ i ] − K 的大小就可以知道 v v <script type="math/tex" id="MathJax-Element-33">v</script>点从哪一点获取的信息

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=185;
int n,K,d[maxn],dis[maxn][maxn],m[maxn][maxn],dp[maxn][maxn],ans[maxn],path[maxn];
void dfs(int u,int fa)
{
    for(int i=1;i<=n;i++)dp[u][i]=d[dis[u][i]]+K;
    for(int v=1;v<=n;v++)
        if(m[u][v]&&v!=fa)
        {
            dfs(v,u);
            for(int i=1;i<=n;i++)dp[u][i]+=min(dp[v][ans[v]],dp[v][i]-K);
        }
    ans[u]=1;
    for(int i=2;i<=n;i++)
        if(dp[u][i]<dp[u][ans[u]])ans[u]=i;
}
void output(int u,int fa,int i)
{
    path[u]=i;
    for(int v=1;v<=n;v++)
        if(m[u][v]&&v!=fa)
        {
            if(dp[v][ans[v]]<dp[v][i]-K)output(v,u,ans[v]);
            else output(v,u,i);
        }
}
int main()
{
    scanf("%d%d",&n,&K);
    for(int i=1;i<n;i++)scanf("%d",&d[i]);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            if(i!=j)dis[i][j]=INF;
            else dis[i][j]=0;
    for(int i=1;i<n;i++)
    {
        int u,v;
        scanf("%d%d",&u,&v);
        m[u][v]=m[v][u]=1;
        dis[u][v]=dis[v][u]=1;
    }
    for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
    dfs(1,0);
    printf("%d\n",dp[1][ans[1]]);
    output(1,0,ans[1]);
    for(int i=1;i<=n;i++)printf("%d%c",path[i],i==n?'\n':' ');
    return 0;
}
引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值