Description
给出一棵 n n 个节点的树,边权均为,要求在其中一些点建立信息中转站,距离中转站 len l e n 的点收到信息的代价为 dlen d l e n ,设置一个中转站的代价是 K K ,问如何设置可以使得总代价最小
Input
第一行两个整数表示点数和设置一个中转站的代价,之后输入 n n 个整数表示不同距离接受信息的代价,最后输入 n−1 n − 1 条树边
(1≤n≤180,1≤K≤105,0≤di≤105,di≤di+1) ( 1 ≤ n ≤ 180 , 1 ≤ K ≤ 10 5 , 0 ≤ d i ≤ 10 5 , d i ≤ d i + 1 )
Output
输出最小代价以及最小代价下每点获取信息的中转站位置
Sample Input
8 10
2 5 9 11 15 19 20
1 4
1 3
1 7
4 6
2 8
2 3
3 5
Sample Output
38
3 3 3 4 3 4 3 3
Solution
以 dp[u][i] d p [ u ] [ i ] 表示在 i i 点建立一个中转站之后点以及子树得到信息的代价最小值,令 ans[u] a n s [ u ] 表示使得 dp[u][i] d p [ u ] [ i ] 最小的 i i ,首先跑遍最短路得到任意两点距离最小值,那么在不考虑 u u 子树时有,之后考虑 u u 儿子节点,那么对于 v v 而言,要么从获取信息,代价为 dp[v][ans[v]] d p [ v ] [ a n s [ v ] ] ,要么从 i i 获取信息,这样的话省去了多建立一个中转站的代价,此时代价为,两者选较小值累加到 dp[u][i] d p [ u ] [ i ] 中,在求出所有 dp[u][i] d p [ u ] [ i ] 后即得到 ans[u] a n s [ u ] ,最后 dp[1][ans[1]] d p [ 1 ] [ a n s [ 1 ] ] 即为最小代价和,具体方案只需比较 dp[v][ans[v]] d p [ v ] [ a n s [ v ] ] 和 dp[v][i]−K d p [ v ] [ i ] − K 的大小就可以知道 v v <script type="math/tex" id="MathJax-Element-33">v</script>点从哪一点获取的信息
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=185;
int n,K,d[maxn],dis[maxn][maxn],m[maxn][maxn],dp[maxn][maxn],ans[maxn],path[maxn];
void dfs(int u,int fa)
{
for(int i=1;i<=n;i++)dp[u][i]=d[dis[u][i]]+K;
for(int v=1;v<=n;v++)
if(m[u][v]&&v!=fa)
{
dfs(v,u);
for(int i=1;i<=n;i++)dp[u][i]+=min(dp[v][ans[v]],dp[v][i]-K);
}
ans[u]=1;
for(int i=2;i<=n;i++)
if(dp[u][i]<dp[u][ans[u]])ans[u]=i;
}
void output(int u,int fa,int i)
{
path[u]=i;
for(int v=1;v<=n;v++)
if(m[u][v]&&v!=fa)
{
if(dp[v][ans[v]]<dp[v][i]-K)output(v,u,ans[v]);
else output(v,u,i);
}
}
int main()
{
scanf("%d%d",&n,&K);
for(int i=1;i<n;i++)scanf("%d",&d[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i!=j)dis[i][j]=INF;
else dis[i][j]=0;
for(int i=1;i<n;i++)
{
int u,v;
scanf("%d%d",&u,&v);
m[u][v]=m[v][u]=1;
dis[u][v]=dis[v][u]=1;
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
dfs(1,0);
printf("%d\n",dp[1][ans[1]]);
output(1,0,ans[1]);
for(int i=1;i<=n;i++)printf("%d%c",path[i],i==n?'\n':' ');
return 0;
}