HDU 6392 Reverse Game(线段树+并查集)

59 篇文章 0 订阅
38 篇文章 0 订阅

Description

给出一 n×n n × n 01 01 矩阵,每行每列连通,且每行第 n n 个元素和第1个元素也连通,两种操作,第一种是反转一列,第二种是反转一个元素,每次操作过后查询整个矩阵中 1 1 连通块数量和0连通块数量

Input

第一行一整数 T T 表示用例组数,每组用例首先输入一整数n,之后输入一个 n×n n × n 01 01 矩阵,之后输入一整数 q q 表示操作次数,最后q行每行首先输入操作类型 type t y p e ,如果 type=1 t y p e = 1 则输入一整数 y y 表示反转第y列,如果 type=2 t y p e = 2 则输入两整数 x,y x , y 表示反转第 x x 行第y列的元素

(1T15,2n200,1q20000) ( 1 ≤ T ≤ 15 , 2 ≤ n ≤ 200 , 1 ≤ q ≤ 20000 )

Output

每次操作后输入整个矩阵中 1 1 连通块数量和0连通块数量

Sample Input

1
5
0 0 0 1 1
1 1 0 0 1
0 1 1 0 1
1 0 0 1 0
1 0 1 1 0
3
2 2 5
2 3 4
1 1

Sample Output

4 5
4 3
2 2

Solution

以行建线段树,用并查集维护连通块,线段树一个节点所代表的区间 [l,r] [ l , r ] 维护第 l l 列和第r列的状态(0/1)以及每个位置所处的连通块编号,同时维护该区间代表的这个子矩阵中的黑色连通块个数以及白色连通块个数,每次合并的时候暴力合并,最后合并根节点左右两边即为答案,注意由于修改操作,并查集每次要初始化,如果全部初始化时间复杂度 O(Tqn2) O ( T q n 2 ) 显然不行,故每次将并查集中被修改节点打标记存下来,初始化时只初始化被打标记的点

Code

#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
namespace fastIO 
{
    #define BUF_SIZE 100000
    //fread -> read
    bool IOerror=0;
    inline char nc() 
    {
        static char buf[BUF_SIZE],*p1=buf+BUF_SIZE,*pend=buf+BUF_SIZE;
        if(p1==pend) 
        {
            p1=buf;
            pend=buf+fread(buf,1,BUF_SIZE,stdin);
            if(pend==p1) 
            {
                IOerror=1;
                return -1;
            }
        }
        return *p1++;
    }
    inline bool blank(char ch) 
    {
        return ch==' '||ch=='\n'||ch=='\r'||ch=='\t';
    }
    inline void read(int &x) 
    {
        char ch;
        while(blank(ch=nc()));
        if(IOerror)return;
        int sgn=1;
        if(ch=='-')sgn=-1;
        for(x=ch-'0';(ch=nc())>='0'&&ch<='9';x=x*10+ch-'0');
        x=sgn*x;
    }
    #undef BUF_SIZE
};
using namespace fastIO;
#define maxn 205
#define ls (t<<1)
#define rs ((t<<1)|1)
int W[maxn<<2],B[maxn<<2],Val[maxn<<2][2][maxn],Num[maxn<<2][2][maxn];
int T,n,q,fa[maxn*maxn],a[maxn][maxn],vis[maxn*maxn];
vector<int>v;
int ID(int x,int y)
{
    return (x-1)*n+y;
}
int find(int x)
{
    if(fa[x]==x)return x;
    if(!vis[x])
    {
        vis[x]=1;
        v.push_back(x);
    }
    return fa[x]=find(fa[x]);
}
void init(int t,int l)
{
    W[t]=B[t]=0;
    for(int i=1;i<=n;i++)Val[t][0][i]=Val[t][1][i]=a[i][l];
    for(int i=1;i<=n;i++)
        if(i==1||a[i][l]!=a[i-1][l])
        {
            Num[t][0][i]=Num[t][1][i]=ID(i,l);
            if(a[i][l])B[t]++;
            else W[t]++;
        }
        else Num[t][0][i]=Num[t][1][i]=Num[t][0][i-1];
}
void push_up(int t)
{
    W[t]=W[ls]+W[rs];B[t]=B[ls]+B[rs];
    for(int i=1;i<=n;i++)
        if(Val[ls][1][i]==Val[rs][0][i])
        {
            int x=find(Num[ls][1][i]),y=find(Num[rs][0][i]);
            if(x==y)continue;
            if(!vis[x])
            {
                vis[x]=1;
                v.push_back(x);
            }
            fa[x]=y;
            if(Val[ls][1][i])B[t]--;
            else W[t]--;
        }
    for(int i=1;i<=n;i++)
    {
        Val[t][0][i]=Val[ls][0][i];Val[t][1][i]=Val[rs][1][i];
        Num[t][0][i]=find(Num[ls][0][i]);Num[t][1][i]=find(Num[rs][1][i]);
    }
}
void build(int l,int r,int t)
{
    if(l==r)
    {
        init(t,l);
        return ;
    }
    int mid=(l+r)/2;
    build(l,mid,ls);build(mid+1,r,rs);
    push_up(t); 
}
void update(int x,int l,int r,int t)
{
    if(l==r)
    {
        init(t,l);
        return ;
    }
    int mid=(l+r)/2;
    if(x<=mid)update(x,l,mid,ls);
    else update(x,mid+1,r,rs);
    push_up(t);
}
void Clear()
{
    for(int i=0;i<v.size();i++)fa[v[i]]=v[i],vis[v[i]]=0;
    v.clear();
}
int main()
{
    read(T);
    while(T--)
    {
        read(n);
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                read(a[i][j]);
        for(int i=1;i<=n*n;i++)fa[i]=i,vis[i]=0;
        v.clear();
        build(1,n,1);
        Clear();
        read(q);
        while(q--)
        {
            int type,x,y;
            read(type);
            if(type==1)
            {
                read(y);
                for(int i=1;i<=n;i++)a[i][y]^=1;
            }
            else
            {
                read(x);read(y);
                a[x][y]^=1;
            }
            update(y,1,n,1);
            Clear();
            int w=W[1],b=B[1];
            for(int i=1;i<=n;i++)
                if(Val[1][1][i]==Val[1][0][i])
                {
                    int x=find(Num[1][1][i]),y=find(Num[1][0][i]);
                    if(x==y)continue;
                    if(!vis[x])
                    {
                        vis[x]=1;
                        v.push_back(x);
                    }
                    fa[x]=y;
                    if(Val[1][1][i])b--;
                    else w--;
                }
            printf("%d %d\n",w,b);
            Clear();
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值