HDU 6407 Pop the Balloons(状压DP+高精度)

40 篇文章 1 订阅
24 篇文章 0 订阅

Description

给出一个 n×m n × m 的区域,如果一个位置为 Q Q 表示该位置有一个气球,每次射击可以射中一个气球并扎破这个气球所处行列上所有的气球,问射击1,...,k次扎破所有气球的方案数

Input

第一行一整数 T T 表示用例组数,每组用例首先输入三个整数n,m,k表示区域范围和最多可以射击的次数,最后输入一个 n×m n × m 的区域表示气球的分布

(1T100,1n12,1m20,1k20) ( 1 ≤ T ≤ 100 , 1 ≤ n ≤ 12 , 1 ≤ m ≤ 20 , 1 ≤ k ≤ 20 )

Output

输出 k k 个整数分别表示射击1,...,k次扎破所有气球的方案数

Sample Input

4
2 2 2
QQ
.Q
2 2 2
QQ
..
3 3 3
.Q.
QQQ
.Q.
1 3 1
Q.Q

Sample Output

1
2
2
0
1
8
0
2

Solution

n12 n ≤ 12 较小,考虑枚举必须要扎破的行的状态 T T ,然后按列进行转移,dp[j][S]表示前 j j 行已经扎破的行状态为S的方案数,那么若第 j+1 j + 1 列的气球状态被 T T 包含,可以选择不在列扎气球,有转移dp[j+1][S]+=dp[j][S],若第 j+1 j + 1 列有在 T T 中而不在S中的第 x x 行的气球,那么可以选择扎这个气球,有转移dp[j+1][S+2x]+=dp[j][S] dp[m][T] d p [ m ] [ T ] 即为必须扎破 T T 状态气球的方案数,假设T状态中有 x x 个气球,那么对第x个答案的贡献即为 dp[m][T]x! d p [ m ] [ T ] ⋅ x ! ,由于结果会爆 long long l o n g   l o n g 故结果要用高精度

Code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
struct BigInt
{
    const static int mod=10000;
    const static int LEN=4;
    int a[20],len;
    BigInt() 
    {
        memset(a,0,sizeof(a));
        len=1;
    }
    void init(ll x)
    {
        memset(a,0,sizeof(a));
        len=0;
        do
        {
            a[len++]=x%mod;
            x/=mod;
        }while(x);
    }
    void Init(const char s[])
    {
        memset(a,0,sizeof(a));
        int l=strlen(s),res=0;
        len=l/LEN;
        if(l%LEN)len++;
        for(int i=l-1;i>=0;i-=LEN)
        {
            int t=0,k=max(i-LEN+1,0);
            for(int j=k;j<=i;j++)t=t*10+s[j]-'0';
            a[res++]=t;
        }
    }
    int Compare(const BigInt &b)
    {
        if(len<b.len)return -1;
        if(len>b.len)return 1;
        for(int i=len-1;i>=0;i--)
            if(a[i]<b.a[i])return -1;
            else if(a[i]>b.a[i])return 1;
        return 0;
    }
    BigInt operator +(const BigInt &b)const
    {
        BigInt ans;
        ans.len=max(len,b.len);
        for(int i=0;i<=ans.len;i++)ans.a[i]=0;
        for(int i=0;i<ans.len;i++)
        {
            ans.a[i]+=((i<len)?a[i]:0)+((i<b.len)?b.a[i]:0);
            ans.a[i+1]+=ans.a[i]/mod;
            ans.a[i]%=mod;
        }
        if(ans.a[ans.len]>0)ans.len++;
        return ans;
    }
    BigInt operator -(const BigInt &b)const
    {
        BigInt ans;
        ans.len=len;
        int k=0;
        for(int i=0;i<ans.len;i++)
        {
            ans.a[i]=a[i]+k-b.a[i];
            if(ans.a[i]<0)ans.a[i]+=mod,k=-1;
            else k=0;           
        }
        while(ans.a[ans.len-1]==0&&ans.len>1)ans.len--;
        return ans;
    }
    BigInt operator *(const BigInt &b)const
    {
        BigInt ans;
        for(int i=0;i<len;i++)
        {
            int k=0;
            for(int j=0;j<b.len;j++)
            {
                int temp=a[i]*b.a[j]+ans.a[i+j]+k;
                ans.a[i+j]=temp%mod;
                k=temp/mod;
            }
            if(k!=0)ans.a[i+b.len]=k;
        }
        ans.len=len+b.len;
        while(ans.a[ans.len-1]==0&&ans.len>1)ans.len--;
        return ans;
    }
    BigInt operator /(const int &n)const
    {
        BigInt ans;
        ans.len=len;
        int k=0;
        for(int i=ans.len-1;i>=0;i--)
        {
            k=k*mod+a[i];
            ans.a[i]=k/n;
            k=k%n;
        }
        while(ans.a[ans.len-1]==0&&ans.len>1)ans.len--;
        return ans;
    }
    void output()
    {
        printf("%d",a[len-1]);
        for(int i=len-2;i>=0;i--)
            printf("%04d",a[i]);
        printf("\n");
    }
}fact[13],temp;
const int INF=0x3f3f3f3f,maxn=100001;
ll dp[21][(1<<12)+5],res[22];
int T,n,m,k,Sta[21],num[(1<<12)+5];
char s[22][22];
int main()
{
    int f=1;
    for(int i=1;i<=12;i++)
    {
        f=f*i;
        fact[i].init(f);
    }
    num[0]=0;
    for(int i=1;i<(1<<12);i++)num[i]=num[i/2]+(i&1);
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d",&n,&m,&k);
        for(int i=0;i<n;i++)scanf("%s",s[i]);
        for(int j=0;j<m;j++)
        {
            Sta[j+1]=0;
            for(int i=0;i<n;i++)
                if(s[i][j]=='Q')Sta[j+1]|=(1<<i);
        } 
        memset(dp,0,sizeof(dp));
        memset(res,0,sizeof(res));
        int N=1<<n;
        for(int T=0;T<N;T++)
        {
            dp[0][0]=1;
            for(int j=0;j<m;j++)
            {
                int flag=0;
                for(int S=T;;S=(S-1)&T)
                {
                    if(dp[j][S])
                    {
                        if((Sta[j+1]&T)==Sta[j+1])
                        {
                            flag=1;
                            dp[j+1][S]+=dp[j][S];
                        }
                        int W=(T^S)&Sta[j+1];
                        while(W)
                        {
                            int x=W&(-W);
                            flag=1;
                            dp[j+1][S|x]+=dp[j][S];
                            W-=x;
                        }
                        dp[j][S]=0;
                    }
                    if(!S)break;
                }
                if(!flag)break;
            }
            res[num[T]]+=dp[m][T];
            for(int S=T;;S=(S-1)&T)
            {
                dp[m][S]=0;
                if(!S)break;
            }
        }
        for(int i=1;i<=k;i++)
        {
            temp.init(res[i]);
            temp=temp*fact[i];
            temp.output();
        }
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在态设计上走一些弯路。 我们来看一下态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对态转移方程进行变形,提算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值