HDU 6417 Rikka with APSP(min_25筛)

201 篇文章 10 订阅

Description

给出一个 n n n个点的完全图,其中 i , j i,j i,j两点之间边的边权为最小的正整数 k k k满足 i j k ijk ijk为完全平方数, d i , j d_{i,j} di,j i i i点到 j j j点的最短距离,求 ∑ 1 ≤ a < b ≤ n d a , b \sum\limits_{1\le a<b\le n}d_{a,b} 1a<bnda,b

Input

第一行一整数 T T T表示用例组数,每组用例输入一整数 n ( 1 ≤ T ≤ 50 , 1 ≤ n ≤ 1 0 10 ) n(1\le T\le 50,1\le n\le 10^{10}) n(1T50,1n1010)

Output

输出答案,结果模 998244353 998244353 998244353

Sample Input

3
4
10
100

Sample Output

16
243
190371

Solution

S a , b S_{a,b} Sa,b表示 a , b a,b a,b指数奇偶性不同的素数集合,若 ∣ S a , b ∣ = 0 |S_{a,b}|=0 Sa,b=0 d a , b = 1 d_{a,b}=1 da,b=1,否则 d a , b = ∏ p ∈ S a , b p d_{a,b}=\prod\limits_{p\in S_{a,b}}p da,b=pSa,bp,这两块分别求解

对于第一部分 ∑ ∣ S a , b ∣ = 0 d a , b \sum\limits_{|S_{a,b}|=0}d_{a,b} Sa,b=0da,b,此时 a , b a,b a,b每个素因子对应的幂指数奇偶性均相同,我们拿出其中指数为奇数的素数乘起来,假设为 c c c,则 μ 2 ( c ) = 1 \mu^2(c)=1 μ2(c)=1( c c c是无平方因子数等价于 μ 2 ( c ) = 1 \mu^2(c)=1 μ2(c)=1),同时 a c , b c \frac{a}{c},\frac{b}{c} ca,cb均为完全平方数,开方后即为两个介于 [ 1 , ⌊ ⌊ n c ⌋ ⌋ ] [1,\lfloor\sqrt{\lfloor\frac{n}{c}\rfloor}\rfloor] [1,cn ]的不同的数字,故有
∑ ∣ S a , b ∣ = 0 d a , b = ∑ c = 1 n μ 2 ( c ) C ⌊ n c ⌋ 2 \sum\limits_{|S_{a,b}|=0}d_{a,b}=\sum\limits_{c=1}^{n}\mu^2(c)C_{\lfloor\frac{n}{c}\rfloor}^2 Sa,b=0da,b=c=1nμ2(c)Ccn2
由于 ⌊ n c ⌋ \lfloor\frac{n}{c}\rfloor cn取值只有 O ( n ) O(\sqrt{n}) O(n )种,对于每种取值 x i x_i xi,假设对应的 c c c的区间为 [ l i , r i ] [l_i,r_i] [li,ri],那么该部分对答案的贡献即为 C x i 2 ∑ j = l i r i μ 2 ( j ) C_{x_i}^2\sum\limits_{j=l_i}^{r_i}\mu^2(j) Cxi2j=liriμ2(j),注意到
∑ i = 1 n μ 2 ( i ) = ∑ i = 1 n ∑ d 2 ∣ i μ ( d ) = ∑ d = 1 n μ ( d ) ⌊ n d 2 ⌋ \sum\limits_{i=1}^n\mu^2(i)=\sum\limits_{i=1}^n\sum\limits_{d^2|i}\mu(d)=\sum\limits_{d=1}^{\sqrt{n}}\mu(d)\lfloor\frac{n}{d^2}\rfloor i=1nμ2(i)=i=1nd2iμ(d)=d=1n μ(d)d2n
故在 O ( n ) O(\sqrt{n}) O(n )复杂度内即可求出 μ 2 ( i ) \mu^2(i) μ2(i)的前缀和,该部分总时间复杂度 O ( n 3 4 l o g 2 n ) O(\frac{n^{\frac{3}{4}}}{log_2n}) O(log2nn43)

对于第二部分 ∑ ∣ S a , b ∣ > 0 d a , b \sum\limits_{|S_{a,b}|>0}d_{a,b} Sa,b>0da,b,设 A n , p A_{n,p} An,p [ 1 , n ] [1,n] [1,n] p p p的指数为奇数的数字个数,其中 p p p为素数,那么有
∑ ∣ S a , b ∣ > 0 d a , b = ∑ p p ⋅ A n , p ⋅ ( n − A n , p ) \sum\limits_{|S_{a,b}|>0}d_{a,b}=\sum\limits_{p}p\cdot A_{n,p}\cdot (n-A_{n,p}) Sa,b>0da,b=ppAn,p(nAn,p)
对于 p ≤ n p\le \sqrt{n} pn ,有 A n , p = ⌊ n p ⌋ − A ⌊ n p ⌋ , p A_{n,p}=\lfloor\frac{n}{p}\rfloor-A_{\lfloor\frac{n}{p}\rfloor,p} An,p=pnApn,p,在 O ( l o g p n ) O(log_pn) O(logpn)复杂度内即可求出 A n , p A_{n,p} An,p

对于 p > n p>\sqrt{n} p>n ,有 A n , p = ⌊ n p ⌋ A_{n,p}=\lfloor\frac{n}{p}\rfloor An,p=pn,同理 A p A_p Ap的取值有 O ( n ) O(\sqrt{n}) O(n )种,对于每种取值对应 p p p的区间 [ l , r ] [l,r] [l,r],我们需要求出该区间的素数和, m i n _ 25 min\_25 min_25筛即可,总时间复杂度也为 O ( n 3 4 l o g 2 n ) O(\frac{n^{\frac{3}{4}}}{log_2n}) O(log2nn43)

Code

#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
#define mod 998244353
int add(int x,int y)
{
    x+=y;
    if(x>=mod)x-=mod;
    return x;
}
int mul(int x,int y)
{
    ll z=1ll*x*y;
    return z-z/mod*mod;
}
#define maxn 200005
#define maxm 1000006
int p[maxm],f[maxm],np=0,m=1000000,mu[maxm],s1[maxm],s[maxm];
void get_prime(int n)
{
    mu[1]=1,s[1]=1;
    for(int i=2;i<=n;i++)
    {
        s1[i]=s1[i-1];
        if(!f[i])p[++np]=i,mu[i]=-1,s1[i]=add(s1[i],i);
        s[i]=s[i-1]+(mu[i]!=0?1:0);
        for(int j=1;j<=np&&i*p[j]<=n;j++)
        {
            f[i*p[j]]=1,mu[i*p[j]]=-mu[i];
            if(i%p[j]==0)
            {
                mu[i*p[j]]=0;
                break;
            }
        }
    }
    np--;
}
ll val[maxn],n;
int nn,cnt;
void init()
{
    nn=1;
    while((ll)nn*nn<n)nn++;
    cnt=0;
    for(ll i=1;i<=n;i=n/(n/i)+1)val[++cnt]=n/i;
}
int ID(ll x)
{
    if(x>=nn)return n/x;
    return cnt-x+1;
}
int g1[maxn];
void Get_g(ll n)
{
    for(int i=1;i<=cnt;i++)
    {
        g1[i]=mul((val[i]-1)%mod,(val[i]+2)%mod);
        if(g1[i]&1)g1[i]+=mod;
        g1[i]/=2;
    }
    for(int j=1;j<=np;j++)
        for(int i=1;i<=cnt&&(ll)p[j]*p[j]<=val[i];i++)
        {
            int k=ID(val[i]/p[j]);
            g1[i]=add(g1[i],mod-mul(p[j],add(g1[k],mod-s1[p[j-1]])));
        }
    return ;
}
ll A(ll n,int p)
{
    if((ll)p*p>n)return n/p;
    return n/p-A(n/p,p);
} 
int S(ll n)
{
    if(n<=m)return s[n];
    int ans=0;
    for(int d=1;(ll)d*d<=n;d++)
        if(mu[d]==1)ans=add(ans,n/d/d%mod);
        else if(mu[d]==-1)ans=add(ans,mod-n/d/d%mod);
    return ans;
}
int main()
{
    get_prime(m);
    int T;
    scanf("%d",&T); 
    while(T--) 
    {
        scanf("%lld",&n);
        init();
        Get_g(n);
        int ans=0;
        for(int x=1;;x++)
        {
            if(val[x+1]>=nn)
                ans=add(ans,mul(add(g1[x],mod-g1[x+1]),mul(n/val[x]%mod,(n-n/val[x])%mod)));
            else
            {
                for(int i=1;i<=np&&p[i]<=val[x];i++)
                {
                    ll temp=A(n,p[i]);
                    ans=add(ans,mul(p[i],mul(temp%mod,(n-temp)%mod)));
                }
                break;
            }
        }
        int last=0,now;
        for(ll i=1,pre;i<=n;i=pre+1)
        {
            pre=n/(n/i);
            int temp=1;
            while((ll)temp*temp<=n/i)temp++;
            temp--;
            temp=(ll)temp*(temp-1)/2%mod;
            now=S(pre);
            ans=add(ans,mul(temp,add(now,mod-last)));
            last=now;
        }
        printf("%d\n",ans);
    } 
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值