Description
F S T FST FST是一名可怜的小朋友,他很强,但是经常 f s t fst fst,所以 r a t i n g rating rating一直低迷。
但是重点在于,他非常适合 A C M ACM ACM!并在最近的区域赛中获得了不错的成绩。
拿到奖金后 F S T FST FST决定买一台新笔记本,但是 F S T FST FST发现,在价格能承受的范围内,笔记本的内存和速度是不可兼得的。
可是,有一些笔记本是被另外一些“完虐”的,也就是内存和速度都不高于另外某一个笔记本,现在 F S T FST FST想统计一下有多少笔记本被“完虐”。
Input
第一行一个正整数 n n n,表示笔记本的数量。接下来 n n n行,每行两个正整数 M i , S i M_i,S_i Mi,Si表示这款笔记本的内存和速度。
( n ≤ 1 0 5 , M i , S i ≤ 1 0 9 ) (n\le 10^5,M_i,S_i\le 10^9) (n≤105,Mi,Si≤109)
Output
一行,一个正整数,表示被完虐的笔记本数。
Sample Input
4
100 700
200 500
50 100
300 400
Sample Output
1
Solution
正序对,把所有笔记本按第一维降序排序后,以此将其第二维插入树状数组中,对于第 i i i个笔记本,之前考虑的 i − 1 i-1 i−1个笔记本第一维比它第一维要大,如果次数树状数组中它第二维所在位置之前没有 i − 1 i-1 i−1个位置有值,说明之前至少有一个笔记本第二维也比它大,那么这个笔记本就被完虐,以此统计答案即可,时间复杂度 O ( n l o g n ) O(nlogn) O(nlogn)
Code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef pair<int,int>P;
const int maxn=100005;
struct BIT
{
#define lowbit(x) (x&(-x))
int b[maxn],n;
void init(int _n)
{
n=_n;
for(int i=1;i<=n;i++)b[i]=0;
}
void update(int x,int v)
{
while(x<=n)
{
b[x]+=v;
x+=lowbit(x);
}
}
int query(int x)
{
int ans=0;
while(x)
{
ans+=b[x];
x-=lowbit(x);
}
return ans;
}
}bit;
P a[maxn];
int n,h[maxn],vis[maxn];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a[i].first,&a[i].second);
a[i].first*=-1;
h[i]=a[i].second;
}
sort(a+1,a+n+1);
sort(h+1,h+n+1);
bit.init(n);
int ans=0;
for(int i=1;i<=n;i++)
{
int t=lower_bound(h+1,h+n+1,a[i].second)-h;
if(bit.query(t)!=i-1)ans++;
bit.update(t,1);
}
printf("%d\n",ans);
return 0;
}