【离散数学】集合关于其上等价关系的商集【1】

求商集(quotient set)通常是指在某个集合上给定一个等价关系之后,求出该等价关系下的商集,也就是将集合中的元素按等价关系分成若干个等价类,然后求得这些等价类所组成的集合。

为了更清晰地解释,我会通过几个例子来展示如何求商集。

### 例子 1:集合上的等价关系

**问题**:设集合 \( S = \{1, 2, 3, 4, 5\} \),定义等价关系 \( \sim \),其规则是两个数 \( x \) 和 \( y \) 在 \( S \) 中等价,当且仅当 \( x \) 和 \( y \) 的差是偶数。求商集 \( S / \sim \)。

**解法**:
1. 首先明确等价关系的规则:\( x \sim y \) 当且仅当 \( x - y \) 是偶数。这意味着 \( x \) 和 \( y \) 的同余类是 \( x \equiv y \pmod{2} \),也就是说,两个数的奇偶性相同,它们是等价的。
2. 将 \( S \) 中的元素根据奇偶性分组:
   - 偶数:\( \{2, 4\} \)
   - 奇数:\( \{1, 3, 5\} \)
   
   所以,商集 \( S / \sim \) 由两类组成:
   \[
   S / \sim = \{\{1, 3, 5\}, \{2, 4\}\}
   \]

### 例子 2:划分集合的等价关系

**问题**:设集合 \( A = \{1, 2, 3, 4\} \),定义等价关系 \( \sim \),其规则是 \( x \sim y \) 当且仅当 \( x \) 和 \( y \) 的差是3的倍数。求商集 \( A / \sim \)。

**解法**:
1. 等价关系规则是 \( x \sim y \) 当且仅当 \( x - y \) 是3的倍数,即 \( x \equiv y \pmod{3} \)。
2. 将 \( A \) 中的元素按照模3的同余类进行分组:
   - 同余类 \( 0 \pmod{3} \):\( \{3\} \)
   - 同余类 \( 1 \pmod{3} \):\( \{1, 4\} \)
   - 同余类 \( 2 \pmod{3} \):\( \{2\} \)
   
   因此,商集 \( A / \sim \) 为:
   \[
   A / \sim = \{\{1, 4\}, \{2\}, \{3\}\}
   \]

### 例子 3:字符串上的等价关系

**问题**:设集合 \( B = \{ \text{"aab"}, \text{"aba"}, \text{"baa"}, \text{"abc"} \} \),定义等价关系 \( \sim \),其规则是两个字符串等价当且仅当它们是由相同字母组成的(即字符集合相同)。求商集 \( B / \sim \)。

**解法**:
1. 等价关系的规则是“由相同字母组成”。因此,我们需要将字符串按字符集合进行分组。
2. 对每个字符串提取它的字符集合:
   - "aab" 的字符集合是 \( \{a, b\} \)
   - "aba" 的字符集合是 \( \{a, b\} \)
   - "baa" 的字符集合是 \( \{a, b\} \)
   - "abc" 的字符集合是 \( \{a, b, c\} \)
   
3. 根据这些字符集合,分组为:
   - \( \{ \text{"aab"}, \text{"aba"}, \text{"baa"} \} \)
   - \( \{ \text{"abc"} \} \)
   
   因此,商集 \( B / \sim \) 为:
   \[
   B / \sim = \{\{\text{"aab"}, \text{"aba"}, \text{"baa"}\}, \{\text{"abc"}\}\}
   \]

### 例子 4:二维平面上的等价关系

**问题**:设集合 \( \mathbb{R}^2 \) 表示二维平面上的所有点,定义等价关系 \( \sim \),其中 \( (x_1, y_1) \sim (x_2, y_2) \) 当且仅当 \( x_1 + y_1 = x_2 + y_2 \)。求商集 \( \mathbb{R}^2 / \sim \)。

**解法**:
1. 等价关系的规则是“点的横纵坐标之和相等”。我们可以将每个点的坐标和看作一个常数,并按这个常数来分组。
2. 将每个点 \( (x, y) \) 映射到 \( x + y \),即所有点将按它们的坐标和进行分组。
3. 对于每个常数 \( c = x + y \),构造一个等价类。等价类的形式是 \( \{ (x, y) \mid x + y = c \} \)。

因此,商集 \( \mathbb{R}^2 / \sim \) 是由所有不同的 \( c \) 形成的集合,其中每个 \( c \) 代表一个直线上的点集合,形式为:
\[
\mathbb{R}^2 / \sim = \{ \{(x, y) \mid x + y = c \} \mid c \in \mathbb{R} \}
\]
这实际上是平面上的所有斜率为-1的直线。

### 总结

在求商集时,关键步骤是:
1. 理解并明确等价关系的规则。
2. 根据等价关系的规则,将集合中的元素分成若干个等价类。
3. 最终得到的商集是这些等价类的集合。

这些例子展示了不同的等价关系如何影响商集的结构,从而帮助你理解商集的求法。


### 商集的定义 商集本质上是一个集合,其元素是由某个关系 \(R\) 所划分的等价类[^1]。具体来说,在给定一个非空集合 \(A\) 和一个定义于 \(A\) 上的等价关系 \(R\) 的情况下,可以将 \(A\) 划分为若干互不相交的子集,这些子集即为等价类。 每个等价类表示满足特定条件的一组元素,而所有这样的等价类构成的集合就是所谓的商集,记作 \(A/R\) 或者 \([a]\),其中 \([a]\) 表示包含元素 \(a\) 的等价类。 ### 商集的应用实例 #### 示例 1:整数模运算下的商集 考虑整数集合 \(\mathbb{Z}\) 及其上的模 \(n\) 同余关系 \(R_n\),对于任意两个整数 \(x, y\),如果它们除以 \(n\) 得到相同的余数,则认为 \(x R_n y\) 成立。这种同余关系会把所有的整数划分为 \(n\) 个不同的等价类,每一个等价类对应着一种可能的余数值 (0 至 \(n-1\))。因此,商集可写作: \[ \mathbb{Z}/R_n = \{\text{[0], [1], ..., [n-1]}\} \] 这正是我们熟知的模算术的基础结构。 #### 示例 2:图论中的导出子图与商集的关系 虽然引用提到的是通过增加边来构建新的导出子图[^2],但在更抽象的意义上也可以讨论如何利用节点之间的某种分类方式形成一个新的简化图形——类似于商集的思想应用于图中。比如当存在某些连通性或者属性相似性的标准时,可以把具有相同特性的顶点归并成一类代表元,从而获得一张反映宏观分区情况的新图作为原图的一种“商”。 ```python def equivalence_classes(A, relation): classes = [] visited = set() for elem in A: if elem not in visited: cls = {y for y in A if relation(elem, y)} classes.append(cls) visited.update(cls) return classes # Example usage with modulo n congruence as the relation. from functools import partial def mod_relation(n, x, y): return (x % n == y % n) mod_3_rel = partial(mod_relation, 3) elements = range(-5, 6) # Some integers to partition. classes_mod3 = equivalence_classes(elements, mod_3_rel) print(classes_mod3) ``` 上述代码片段展示了如何计算一组数据按照指定二元关系所形成的等价类列表。这里选取了简单的模三同余例子来进行演示。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值