右陪集划分是群论中关于群的一个重要概念,特别是在研究群的商群或陪集时非常有用。简单来说,给定一个群 \( G \) 和它的一个子群 \( H \),群 \( G \) 可以被划分成若干个右陪集。我们可以通过这个过程来研究群的结构。
### 右陪集的定义
如果 \( G \) 是一个群,\( H \) 是 \( G \) 的一个子群,那么 \( G \) 的 **右陪集**(right coset)是通过将 \( H \) 的每个元素与 \( G \) 的某个固定元素 \( g \in G \) 相乘来得到的一个集合。具体地,右陪集定义为:
\[
gH = \{gh \mid h \in H \}
\]
其中,\( gH \) 表示由 \( g \) 与 \( H \) 中的所有元素相乘所得到的集合。
### 右陪集划分过程
右陪集划分的过程包括以下几个步骤:
1. **选择一个群 \( G \) 和子群 \( H \)**:
设 \( G \) 为一个群,\( H \) 为 \( G \) 的一个子群。
2. **计算右陪集**:
对于 \( G \) 中的每个元素 \( g \),计算右陪集 \( gH \)。这里的右陪集是通过将 \( H \) 中的所有元素与 \( g \) 相乘得到的集合。
3. **检查不同右陪集之间是否有交集**:
如果两个右陪集 \( g_1H \) 和 \( g_2H \) 交集非空,则有 \( g_1H = g_2H \)。也就是说,右陪集之间要么相等,要么没有交集。
4. **划分群 \( G \)**:
群 \( G \) 被划分为若干个互不相交的右陪集,且每个右陪集包含相同数量的元素。
### 例子
假设 \( G = S_3 \)(对称群,包含 3 个元素的排列)和 \( H = \langle (12) \rangle \) 是 \( S_3 \) 的子群。我们来通过右陪集划分来分析。
1. **群 \( G = S_3 \)** 包含的元素是:
\( S_3 = \{ e, (12), (13), (23), (123), (132) \} \)
2. **子群 \( H = \langle (12) \rangle \)** 包含的元素是:
\( H = \{ e, (12) \} \)
3. **计算右陪集**:
- 对于元素 \( e \in G \),右陪集是:
\[
eH = \{ e \cdot e, e \cdot (12) \} = \{ e, (12) \}
\]
- 对于元素 \( (13) \in G \),右陪集是:
\[
(13)H = \{ (13) \cdot e, (13) \cdot (12) \} = \{ (13), (132) \}
\]
- 对于元素 \( (23) \in G \),右陪集是:
\[
(23)H = \{ (23) \cdot e, (23) \cdot (12) \} = \{ (23), (123) \}
\]
- 对于元素 \( (123) \in G \),右陪集是:
\[
(123)H = \{ (123) \cdot e, (123) \cdot (12) \} = \{ (123), (23) \}
\]
- 对于元素 \( (132) \in G \),右陪集是:
\[
(132)H = \{ (132) \cdot e, (132) \cdot (12) \} = \{ (132), (13) \}
\]
4. **检查交集**:
通过检查上面得到的右陪集,发现它们之间没有交集,每个右陪集都是独立的。因此,群 \( G = S_3 \) 被划分为以下右陪集:
\[
\{ e, (12) \}, \{ (13), (132) \}, \{ (23), (123) \}
\]
5. **划分群 \( G \)**:
所以 \( S_3 \) 的右陪集划分为三类,每个右陪集包含两个元素。
### 右陪集划分的性质
- 所有右陪集大小相同,即它们都包含相同数量的元素。
- 群 \( G \) 被划分成若干个不相交的右陪集。
- 如果子群 \( H \) 的大小为 \( |H| \),那么每个右陪集的大小也是 \( |H| \)。
- 群的元素总数 \( |G| \) 等于右陪集数目与每个右陪集的大小的乘积,即:
\[
|G| = [G : H] \times |H|
\]
其中 \( [G : H] \) 表示 \( G \) 中包含的右陪集的数目。
右陪集划分是群论中研究商群、群的结构和同构的重要工具。通过划分,可以深入理解群的内部结构以及子群的作用。