洛谷 P1081 [NOIP2012 提高组] 开车旅行

题目描述

小 AA 和小 BB 决定利用假期外出旅行,他们将想去的城市从 11 到 �n 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 �i 的海拔高度为ℎ�hi​,城市 �i 和城市 �j 之间的距离 ��,�di,j​ 恰好是这两个城市海拔高度之差的绝对值,即 ��,�=∣ℎ�−ℎ�∣di,j​=∣hi​−hj​∣。

旅行过程中,小 AA 和小 BB 轮流开车,第一天小 AA 开车,之后每天轮换一次。他们计划选择一个城市 �s 作为起点,一直向东行驶,并且最多行驶 �x 公里就结束旅行。

小 AA 和小 BB 的驾驶风格不同,小 BB 总是沿着前进方向选择一个最近的城市作为目的地,而小 AA 总是沿着前进方向选择第二近的城市作为目的地(注意:本题中如果当前城市到两个城市的距离相同,则认为离海拔低的那个城市更近)。如果其中任何一人无法按照自己的原则选择目的城市,或者到达目的地会使行驶的总距离超出 �x 公里,他们就会结束旅行。

在启程之前,小 AA 想知道两个问题:

1、 对于一个给定的 �=�0x=x0​,从哪一个城市出发,小 AA 开车行驶的路程总数与小 BB 行驶的路程总数的比值最小(如果小 BB 的行驶路程为 00,此时的比值可视为无穷大,且两个无穷大视为相等)。如果从多个城市出发,小 AA 开车行驶的路程总数与小 BB 行驶的路程总数的比值都最小,则输出海拔最高的那个城市。

2、对任意给定的 �=��x=xi​ 和出发城市 ��si​,小 AA 开车行驶的路程总数以及小 BB 行驶的路程总数。

输入格式

第一行包含一个整数 �n,表示城市的数目。

第二行有 �n 个整数,每两个整数之间用一个空格隔开,依次表示城市 11 到城市 �n 的海拔高度,即 ℎ1,ℎ2...ℎ�h1​,h2​...hn​,且每个 ℎ�hi​ 都是互不相同的。

第三行包含一个整数 �0x0​。

第四行为一个整数 �m,表示给定 �m 组 ��si​ 和 ��xi​。

接下来的 �m 行,每行包含 22 个整数 ��si​ 和 ��xi​,表示从城市��si​ 出发,最多行驶 ��xi​ 公里。

输出格式

输出共 �+1m+1 行。

第一行包含一个整数 �0s0​,表示对于给定的 �0x0​,从编号为 �0s0​ 的城市出发,小 AA 开车行驶的路程总数与小 BB 行驶的路程总数的比值最小。

接下来的 �m 行,每行包含 22 个整数,之间用一个空格隔开,依次表示在给定的 ��si​ 和 ��xi​ 下小 AA 行驶的里程总数和小 BB 行驶的里程总数。

输入输出样例

输入 #1复制

4 
2 3 1 4 
3 
4 
1 3 
2 3 
3 3 
4 3

输出 #1复制

1 
1 1 
2 0 
0 0 
0 0 

输入 #2复制

10 
4 5 6 1 2 3 7 8 9 10 
7 
10 
1 7 
2 7 
3 7 
4 7 
5 7 
6 7 
7 7 
8 7 
9 7 
10 7

输出 #2复制

2 
3 2 
2 4 
2 1 
2 4 
5 1 
5 1 
2 1 
2 0 
0 0 
0 0

说明/提示

【样例1说明】

各个城市的海拔高度以及两个城市间的距离如上图所示。

如果从城市 11 出发,可以到达的城市为 2,3,42,3,4,这几个城市与城市 11 的距离分别为 1,1,21,1,2,但是由于城市 33 的海拔高度低于城市 22,所以我们认为城市 33 离城市 11 最近,城市 22 离城市 11 第二近,所以小A会走到城市 22。到达城市 22 后,前面可以到达的城市为 3,43,4,这两个城市与城市 22 的距离分别为 2,12,1,所以城市 44 离城市 22 最近,因此小B会走到城市44。到达城市 44 后,前面已没有可到达的城市,所以旅行结束。

如果从城市 22 出发,可以到达的城市为 3,43,4,这两个城市与城市 22 的距离分别为 2,12,1,由于城市 33 离城市 22 第二近,所以小 AA 会走到城市 33。到达城市 33 后,前面尚未旅行的城市为 44,所以城市 44 离城市 33 最近,但是如果要到达城市 44,则总路程为 2+3=5>32+3=5>3,所以小 BB 会直接在城市 33 结束旅行。

如果从城市 33 出发,可以到达的城市为 44,由于没有离城市 33 第二近的城市,因此旅行还未开始就结束了。

如果从城市 44 出发,没有可以到达的城市,因此旅行还未开始就结束了。

【样例2说明】

当 �=7x=7 时,如果从城市 11 出发,则路线为 1→2→3→8→91→2→3→8→9,小 AA 走的距离为 1+2=31+2=3,小 BB 走的距离为 1+1=21+1=2。(在城市 11 时,距离小 AA 最近的城市是 22 和 66,但是城市 22 的海拔更高,视为与城市 11 第二近的城市,所以小 AA 最终选择城市 22;走到99 后,小 AA 只有城市 1010 可以走,没有第二选择可以选,所以没法做出选择,结束旅行)

如果从城市 22 出发,则路线为 2→6→72→6→7,小 AA 和小 BB 走的距离分别为 2,42,4。

如果从城市 33 出发,则路线为 3→8→93→8→9,小 AA 和小 BB 走的距离分别为2,12,1。

如果从城市 44 出发,则路线为 4→6→74→6→7,小 AA 和小 BB 走的距离分别为 2,42,4。

如果从城市 55 出发,则路线为 5→7→85→7→8,小 AA 和小 BB 走的距离分别为 5,15,1。

如果从城市 66 出发,则路线为 6→8→96→8→9,小 AA 和小 BB 走的距离分别为5,15,1。

如果从城市 77 出发,则路线为 7→9→107→9→10,小 AA 和小 BB 走的距离分别为2,12,1。

如果从城市 88 出发,则路线为 8→108→10,小 AA 和小 BB 走的距离分别为2,02,0。

如果从城市 99 出发,则路线为 99,小 AA 和小 BB 走的距离分别为 0,00,0(旅行一开始就结束了)。

如果从城市 1010 出发,则路线为 1010,小 AA 和小 BB 走的距离分别为0,00,0。

从城市 22 或者城市 44 出发小 AA 行驶的路程总数与小 BB 行驶的路程总数的比值都最小,但是城市 22 的海拔更高,所以输出第一行为 22。

【数据范围与约定】

对于 30%30% 的数据,有1≤�≤20,1≤�≤201≤n≤20,1≤m≤20;
对于40%40% 的数据,有1≤�≤100,1≤�≤1001≤n≤100,1≤m≤100;
对于 50%50% 的数据,有1≤�≤100,1≤�≤10001≤n≤100,1≤m≤1000;
对于 70%70% 的数据,有1≤�≤1000,1≤�≤1041≤n≤1000,1≤m≤104;
对于 100%100% 的数据:1≤�,�≤1051≤n,m≤105,−109≤ℎ�≤109−109≤hi​≤109,1≤��≤�1≤si​≤n,0≤��≤1090≤xi​≤109
数据保证 ℎ�hi​ 互不相同。

Description

小A和小B决定利用假期外出旅行,他们将想去的城市从 1 到 N 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i 的海拔高度为 Hi,城市 i 和城市 j 之间的距离 d[i,j]恰好是这两个城市海拔高度之差的绝对值,即 d[i,j] = |Hi−Hj|。

旅行过程中,小 A 和小 B 轮流开车,第一天小 A 开车,之后每天轮换一次。他们计划选择一个城市 S 作为起点,一直向东行驶,并且最多行驶 X 公里就结束旅行。小 A 和小 B 的驾驶风格不同,小 B 总是沿着前进方向选择一个最近的城市作为目的地,而小 A 总是沿着前进方向选择第二近的城市作为目的地(注意:本题中如果当前城市到两个城市的距离相同,则认为离海拔低的那个城市更近)。如果其中任何一人无法按照自己的原则选择目的城市,或者到达目的地会使行驶的总距离超出 X 公里,他们就会结束旅行。

在启程之前,小 A 想知道两个问题:

1.对于一个给定的 X=X0,从哪一个城市出发,小 A 开车行驶的路程总数与小 B 行驶的路程总数的比值最小(如果小 B 的行驶路程为 0,此时的比值可视为无穷大,且两个无穷大视为相等)。如果从多个城市出发,小 A 开车行驶的路程总数与小 B 行驶的路程总数的比值都最小,则输出海拔最高的那个城市。

2. 对任意给定的 X=Xi 和出发城市 Si,小 A 开车行驶的路程总数以及小 B 行驶的路程总数。

Input

第一行包含一个整数 N,表示城市的数目。

第二行有 N 个整数,每两个整数之间用一个空格隔开,依次表示城市 1 到城市 N 的海拔高度,即 H1,H2,……,Hn,且每个 Hi 都是不同的。

第三行包含一个整数 X0。

第四行为一个整数 M,表示给定 M 组 Si 和 Xi。

接下来的 M 行,每行包含 2 个整数 Si 和 Xi,表示从城市 Si 出发,最多行驶 Xi 公里。 

Output

  输出共 M+1 行。

第一行包含一个整数 S0,表示对于给定的 X0,从编号为 S0 的城市出发,小 A 开车行驶的路程总数与小 B 行驶的路程总数的比值最小。

接下来的 M 行,每行包含 2 个整数,之间用一个空格隔开,依次表示在给定的 Si 和Xi 下小 A 行驶的里程总数和小 B 行驶的里程总数。

Sample Input&&Hint

【样例输入1】
4
2 3 1 4
3
4
1 3
2 3
3 3
4 3

【样例输入2】
10
4 5 6 1 2 3 7 8 9 10
7
10
1 7
2 7
3 7
4 7
5 7
6 7
7 7
8 7
9 7
10 7
【样例输出1】
1
1 1
2 0
0 0
0 0

各个城市的海拔高度以及两个城市间的距离如上图所示。

如果从城市1出发,可以到达的城市为2,3,4,这几个城市与城市1的距离分别为1,1,2,但是由于城市3的海拔高度低于城市2,所以我们认为城市3离城市1最近,城市2离城市1第二近,所以小A会走到城市2。到达城市2后,前面可以到达的城市为3,4,这两个城市与城市2的距离分别为2,1,所以城市4离城市2最近,因此小B会走到城市4。到达城市4后,前面已没有可到达的城市,所以旅行结束。

如果从城市2出发,可以到达的城市为3,4,这两个城市与城市2的距离分别为2,1,由于城市3离城市2第二近,所以小A会走到城市3。到达城市3后,前面尚未旅行的城市为4,所以城市4离城市3最近,但是如果要到达城市4,则总路程为2+3=5>3,所以小 B会直接在城市3结束旅行。

如果从城市3出发,可以到达的城市为4,由于没有离城市3第二近的城市,因此旅行还未开始就结束了。

如果从城市4出发,没有可以到达的城市,因此旅行还未开始就结束了。 【样例输出2】 2 3 2 2 4 2 1 2 4 5 1 5 1 2 1 2 0 0 0 0 0 【输入输出样例2说明】   当X=7时,

如果从城市1出发,则路线为1->2->3->8->9,小A走的距离为1+2=3,小B走的距离为1+1=2。(在城市1时,距离小A最近的城市是2和6,但是城市2的海拔更高,视为与城市1第二近的城市,所以小A最终选择城市2;走到9后,小A只有城市10可以走,没有第2选择可以选,所以没法做出选择,结束旅行)

如果从城市2出发,则路线为2->6->7,小A和小B走的距离分别为2,4。    如果从城市3出发,则路线为3->8->9,小A和小B走的距离分别为2,1。

如果从城市4出发,则路线为4->6->7,小A和小B走的距离分别为2,4。

如果从城市5出发,则路线为5->7->8,小A 和小B走的距离分别为5,1。

如果从城市6出发,则路线为6->8->9,小A和小B走的距离分别为5,1。

如果从城市7出发,则路线为7->9->10,小A 和小B走的距离分别为2,1。

如果从城市8出发,则路线为8->10,小A 和小B走的距离分别为2,0。

如果从城市 9 出发,则路线为9,小A和小B走的距离分别为0,0(旅行一开始就结束了)。

如果从城市10出发,则路线为10,小A和小B走的距离分别为0,0。

从城市2或者城市4出发小A行驶的路程总数与小B行驶的路程总数的比值都最小,但是城市2的海拔更高,所以输出第一行为2。

【数据范围】

对于 30%的数据,有 1≤N≤20,1≤M≤20;

对于 40%的数据,有 1≤N≤100,1≤M≤100;

对于 50%的数据,有 1≤N≤100,1≤M≤1,000;

对于 70%的数据,有 1≤N≤1,000,1≤M≤10,000;

对于 100%的数据,有

1≤N≤100,000,1≤M≤10,000,-1,000,000,000≤Hi≤1,000,000,000, 0≤X0≤1,000,000,000,1≤Si≤N,0≤Xi≤1,000,000,000,

数据保证 Hi互不相同。

Part 1 预处理

首先要处理出小A和小B怎么走。 我们用ga(i)、gb(i)分别表示小A、小B行驶到的下一个城市 容易想到,嗯,

法一:暴力求解 枚举1-n的每一个城市,对于每个城市i,从(i+1-n)中选取距离最小的两个城市。时间复杂度 n^2.爆啦!surprise mother f**k

接下来讲讲正解,有个神奇的东西叫做#inclue<set>

它支持logn级别的插入和查询,并对内部的数进行排序

s.insert(x);//插入x
s.lower_bound(x);//查找**大于等于**x的最小元素,返回迭代器
s.upper_bound(x);//查找**大于**x的最小元素,返回迭代器

所以。对于当前城市i

最近的和第二近的只会在

四个位置出现 PS:这里有个细节,他们只能向编号更大的城市走去,所以可以用个小技巧,倒着处理**。

  for(int i=n; i>=1; i--)
  	q.insert(h[i]);

Part 2 动态规划

- 本题关键

  • 在哪里(城市)
  • 开了多久(天数)
  • A、B行驶的长度

但其实知道前两个就可以推出第三个。

因此我们可以定义

f[i,j,k]表示从城市j出发,两人一共行驶i天,k先开车最终会到达的城市。其中k=0表示A开车,k=1表示B开车。

于是终极大魔王出现了!

倍增DP

我们将i改为一共行驶了2^i天。

于是初值:

f[0,j,0]=ga(j),f[0,j,1]=gb(j)

当i=1时,因为2^0是奇数,所以两人从j出发开2^1天所到达的城市,等于k先开2^0天,另一人再开2^0天所到达的城市

f[1,j,k]=f[0,f[0,j,k],1-k/*换了个人开*/]

当i>1时,你怎么折腾2^i都是偶数,所以不会换人,而两人从j出发开2^i天所到达的城市,等于等于k先开2^i-1天,k再开2^i-1天所到达的城市。

所以

f[i,j,k]=f[i-1,f[i-1,j,k],k]

**这里有个小问题,需要注意超出n的边界的情况,所以需要特判

鉴于f数组,于是易得

定义da[i,j,k]表示从j城出发,由k先开,行驶2^i天,小A走的路程

当i==1时da[1,j,k]=da[0,j,k]+da[0,f[0,j,k],i-k];

否则 da[i,j,k]=da[i-1,j,k]+da[i-1,f[0,j,k],1-k];

我们定义db[i,j,k]表示从j城出发,由k先开,行驶2^i天,小B走的路程

当i==1时db[1,j,k]=db[0,j,k]+db[0,f[0,j,k],i-k];

否则 db[i,j,k]=db[i-1,j,k]+db[i-1,f[0,j,k],1-k];

时间复杂度Nlog N. 但是这里仅算出了2^i次方下的情况。于是我们需要满足求出从城市S出发最多行驶X公里时,A和B走了多远。

我们按倒叙枚举2的i次方,基于二进制划分的思想来拼凑X。

1.倒叙循环i=logN-0

2.对于每个i若两人从p出发行驶2^i天累计路程仍未超过x,则令累计路程加上x,并行驶到该城市

3.循环结束后即为所求。

最终实现了logN查询的复杂度。

然后对于问题。。。

[问题1]枚举!然后计算取比值最小的即为答案 [问题2]多次计算。

于是整个算法的时间复杂度O((N+M)log N)

代码来了:

#include<iostream>
#include<set>
#include<algorithm>
#include<cmath>
#include<string.h>
using namespace std;
//最大坑点!本题要开long long 
const long long INF=0x7fffffffffffffff/2;
double ans=10000000000;
struct node
{
  long long h;
  int id;
} h[100005],ga[100005],gb[100005];//储存城市信息 
struct point
{
  long long la,lb;
};
bool operator <(node as,node bs)
{
  if(as.h!=bs.h)return as.h<bs.h;
  else return as.id<bs.id;
}//重载运算符 
set<node> q;//以城市为单位入set 
int n,f[20][100005][3];
long long da[20][100005][3],db[20][100005][3];
bool cmp(node as,node bs)
{
  return as.h<bs.h;
}
point Calc(int p,int x)//计算以p为起点,行驶距离不超过x的路程和 
{
  long long la=0,lb=0;
  for(int i=18; i>=0; i--)//倒叙 
  {
  	if(f[i][p][0]&&la+lb+da[i][p][0]+db[i][p][0]<=x)
  	{
  		la+=da[i][p][0];
  		lb+=db[i][p][0];
  		p=f[i][p][0];

  	}
  }
  return {la,lb};
}
int main()
{
  scanf("%d",&n);
  q.insert({INF,0});
  q.insert({INF-1,0});
  q.insert({-INF,0});
  q.insert({-INF+1,0});//边界处理,预防预处理时越界 
  for(int i=1; i<=n; i++)
  {
  	scanf("%lld",&h[i].h);
  	h[i].id=i;
  }
   
  for(int i=n; i>=1; i--)//倒叙 
  {
  	q.insert(h[i]);
  	node t[5];
  	t[1]=*--q.lower_bound(h[i]);
  	t[2]=*--q.lower_bound(t[1]);
  	t[3]=*q.upper_bound(h[i]);
  	t[4]=*q.upper_bound(t[3]);//查找4个可能为最近城市
  	for(int j=1; j<=4; j++)t[j].h=abs(t[j].h-h[i].h);
  	sort(t+1,t+5,cmp);//排序 
  	ga[i]=t[2];
  	gb[i]=t[1];
  }
  for(int i=1; i<n; i++)
  {
  	f[0][i][0]=ga[i].id;
  	f[0][i][1]=gb[i].id;
  }
  for(int i=1; i<=18; i++)
  	for(int j=1; j<=n; j++)
  		if(j+(1<<i)<=n)//预防越界 
  			for(int k=0; k<=1; k++)
  			{
  				if(i==1)f[1][j][k]=f[0][f[0][j][k]][1-k];
  				else f[i][j][k]=f[i-1][f[i-1][j][k]][k];
  			}
  memset(da,127/3,sizeof(da));
  memset(db,127/3,sizeof(db));//当不可到达时默认为最大 
  for(int i=1; i<=n; i++)
  {
  	da[0][i][0]=ga[i].h;
  	da[0][i][1]=0;
  }
  for(int i=1; i<=18; i++)
  	for(int j=1; j<=n; j++)
  		if(j+(1<<i)<=n)//预防越界 
  			for(int k=0; k<=1; k++)
  			{
  				if(i==1)
  				{
  					da[1][j][k]=da[0][j][k]+da[0][f[0][j][k]][1-k];
  				}
  				else da[i][j][k]=da[i-1][j][k]+da[i-1][f[i-1][j][k]][k];
  			}
  for(int i=1; i<=n; i++)
  {
  	db[0][i][0]=0;
  	db[0][i][1]=gb[i].h;
  }
  for(int i=1; i<=18; i++)
  	for(int j=1; j<=n; j++)
  		if(j+(1<<i)<=n)//预防越界 
  			for(int k=0; k<=1; k++)
  			{
  				if(i==1)
  				{
  					db[1][j][k]=db[0][j][k]+db[0][f[0][j][k]][k^1];
  				}
  				else db[i][j][k]=db[i-1][j][k]+db[i-1][f[i-1][j][k]][k];
  			}
  int x0,m;
  scanf("%d",&x0);
  int ddd=0;
  for(int i=1; i<=n; i++)//枚举找出最小比 
  {
  	point tmp=Calc(i,x0);
  	if(tmp.lb==0)continue;//防止除0 
  	double ccf=(long double)tmp.la/(long double)tmp.lb;
  	if(ccf<ans)ans=ccf,ddd=i;
  }
  printf("%d\n",ddd);
  scanf("%d",&m);
  for(int i=1; i<=m; i++)
  {
  	int si,xi;
  	scanf("%d%d",&si,&xi);
  	point tmp=Calc(si,xi);//依次计算 
  	printf("%lld %lld\n",tmp.la,tmp.lb);
  }
}

拜拜! 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值