寻找矩阵的极小值

3 篇文章 0 订阅
该博客探讨了一种在矩阵中寻找极小值的高效算法,时间复杂度为O(nlogn)。通过固定列并使用二分查找,可以在给定的查询操作下找到极小值。算法首先找到某一列的最小值,然后比较其左右相邻元素,根据比较结果划分矩阵并继续在有解的半区进行二分查找,直到找到极小值或缩小到单个元素。
摘要由CSDN通过智能技术生成

本题的前置问题:寻找数组的峰值

题意

极小值定义为比该元素上下左右四个值都小,则该元素为极小值。要求返回矩阵中的任意一个极小值,时间复杂度为O(nlogn),矩阵隐式给出,只能通过query(x,y)来访问matrix[x][y]

若是直接遍历,或者从任意一个值开始向最小的值搜索,时间复杂度都是O(n^2)

解法

前置问题中数组的峰值是用二分来查找的,实际上从时间复杂度可以看出本题也是用二分来做。极小值小于周围四个数字,实际上就是在当前行当前列都是极小值。那么如果我们固定一列,寻找最小值(最小值一定在列上是极小值)。在该最小值处考察它的所在行,若该元素左右值都大于它,则该元素就是极小值。若左右值有一个小于或两个都小于,根据固定列划分矩阵为左右两半,那么该元素左右较小值所在半边一定存在解。因为以较小值为起点,向该半区搜索,每次沿周围最小值走,由于固定列的值都比该较小值大,因此搜索路径不会穿过固定列。

因此我们就排除了一个半区,那么在有解的半区再次取中间列,继续寻找。
注意如果想要行列同时二分是不可以的,比如先找固定列,找到半区后再找固定行,划分上下半区,这种二分是不对的。在一些情况下是不一定有解的,破坏了二分的性质。

代码

#include <iostream>
using namspace std;
int main(){
	cin>>n;
	int l = 0,r = n - 1;
	while(l < r){
		int mid = (l + r) >> 1;
		int k;//记录该列最小值的行数
		int val = INT_MAX;
		for(int i = 0;i < n;i++){
			int t = query(i,mid);
			if(t < val){
				val = t;
				k = i;
			}
		}
		int left = mid ? query(k,mid - 1) : INT_MAX;//mid有可能是0,比如l一直不动就是0,那么mid不断变小最后向下取整为0.mid为0时,说明左侧没有区域了,设置成最大值
		int right = mid + 1 < n ? query(k,mid + 1) : INT_MAX;//mid有可能是右边界,此时说明右侧没有区域了,设置成最大值。
		if(val < right && val < left) return val;
		if(val < left)l = mid + 1;
		else r = mid;
	}
	int k;//如果在二分过程中没有找到解,那么最后l==r,在该列上找到最小值就是解
	int val = INT_MAX;
	for(int i = 0;i < n;i++){
		int t = query(i,mid);
		if(t < val){
			val = t;
			k = i;
		}
	}
	return val;
}
在MATLAB中,寻找矩阵中的局部极大值通常涉及到信号处理或图像处理中的梯度计算和峰值检测。以下是一个简要的步骤概述: 1. **定义矩阵**:首先,你需要一个二维数组(矩阵)作为输入数据。 2. **计算梯度**:使用MATLAB的`gradient`函数或者`imgradient`函数计算矩阵的x和y方向的梯度,这将给出每个像素变化的方向和幅度。 3. **平滑处理**:为了减少噪声影响,对梯度图进行平滑(如使用`imfilter`函数中的高斯滤波器)。 4. **峰值检测**:利用`maxFilter`或者`imfindpeaks`函数查找局部极大值点。这些函数可以找到梯度图中的局部最大值及其坐标。 5. **验证极值**:确认检测到的点确实是局部极大值,而不是边缘或其他噪声造成的局部最大。 6. **设置邻域大小**:在实际应用中,可能需要指定一个邻域大小,只考虑这个大小内的像素值来确定是否为真正的极大值。 下面是一个示例代码片段: ```matlab % 假设你有一个名为data的矩阵 data = randn(100, 100); % 示例数据 % 计算梯度 [gradX, gradY] = gradient(data); % 平滑梯度 gradX_smoothed = imfilter(gradX, fspecial('gaussian', [5 5], 2)); gradY_smoothed = imfilter(gradY, fspecial('gaussian', [5 5], 2)); % 检测峰值 [maxVal, locs] = imfindpeaks(gradX_smoothed + gradY_smoothed, 'MinPeakHeight', 0.1, 'MaxPeakDistance', 10); % 邻域大小设为10 % 查看局部极大值点 figure; imagesc(data); hold on; scatter(locs(:,2), locs(:,1), 'r', 'filled'); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值