本题的前置问题:寻找数组的峰值
题意
极小值定义为比该元素上下左右四个值都小,则该元素为极小值。要求返回矩阵中的任意一个极小值,时间复杂度为O(nlogn),矩阵隐式给出,只能通过query(x,y)来访问matrix[x][y]
若是直接遍历,或者从任意一个值开始向最小的值搜索,时间复杂度都是O(n^2)
解法
前置问题中数组的峰值是用二分来查找的,实际上从时间复杂度可以看出本题也是用二分来做。极小值小于周围四个数字,实际上就是在当前行当前列都是极小值。那么如果我们固定一列,寻找最小值(最小值一定在列上是极小值)。在该最小值处考察它的所在行,若该元素左右值都大于它,则该元素就是极小值。若左右值有一个小于或两个都小于,根据固定列划分矩阵为左右两半,那么该元素左右较小值所在半边一定存在解。因为以较小值为起点,向该半区搜索,每次沿周围最小值走,由于固定列的值都比该较小值大,因此搜索路径不会穿过固定列。
因此我们就排除了一个半区,那么在有解的半区再次取中间列,继续寻找。
注意如果想要行列同时二分是不可以的,比如先找固定列,找到半区后再找固定行,划分上下半区,这种二分是不对的。在一些情况下是不一定有解的,破坏了二分的性质。
代码
#include <iostream>
using namspace std;
int main(){
cin>>n;
int l = 0,r = n - 1;
while(l < r){
int mid = (l + r) >> 1;
int k;//记录该列最小值的行数
int val = INT_MAX;
for(int i = 0;i < n;i++){
int t = query(i,mid);
if(t < val){
val = t;
k = i;
}
}
int left = mid ? query(k,mid - 1) : INT_MAX;//mid有可能是0,比如l一直不动就是0,那么mid不断变小最后向下取整为0.mid为0时,说明左侧没有区域了,设置成最大值
int right = mid + 1 < n ? query(k,mid + 1) : INT_MAX;//mid有可能是右边界,此时说明右侧没有区域了,设置成最大值。
if(val < right && val < left) return val;
if(val < left)l = mid + 1;
else r = mid;
}
int k;//如果在二分过程中没有找到解,那么最后l==r,在该列上找到最小值就是解
int val = INT_MAX;
for(int i = 0;i < n;i++){
int t = query(i,mid);
if(t < val){
val = t;
k = i;
}
}
return val;
}