【研究】光场相机测速技术中景深方向不确定性的改进方法

研究介绍了一种利用光场相机和LFRB技术的粒子追踪测速算法,通过多视角追踪和深度信息整合,有效解决了PIV实验中的景深方向问题。实验对比了plenoptic-PIV和Stereo-PIV,结果显示plenoptic-PTV在平面外速度测量上表现更优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本项研究详细介绍了一种基于光场相机的粒子追踪测速(PTV)算法,旨在对三维速度场的三分量进行精细化测量。算法核心在于利用相机视角的多样性,辅以三角化测量和粒子追踪技术,有效优化了光场粒子图像测速(PIV)实验中常见的景深方向不确定性难题。

首先采用Light Field Ray Bundling(LFRB)技术进行三维位置评估,框架如图1所示,通过图像数据与物理空间的映射函数将粒子光线投影至测量体。随后,算法在多个视角视图中独立追踪粒子,统合各个视点信息预测粒子随时间的动态轨迹,这不仅增强了三维轨迹估算的准确性,还保护了追踪算法免受深度信息上的非物理波动影响,如图2所示。

图片

图1 Light Field Ray Bundling(LFRB)算法框架

图片

图2 Plenoptic-PTV算法框架

实验验证

研究团队采用两种不同的成像方法,即光场粒子图像测速(Plenoptic-PIV/PTV)与体视粒子图像测速(Stereo-PIV),进行了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值