统计一串字符中每个字符的出现次数,以及哈夫曼树的WPL

WPL:weight path length  树的带权路径长度 

#include <bits/stdc++.h>
using namespace std;

int main() {
    int arr[30];
    memset(arr, 0, sizeof(arr));
    string s;
    cin >> s;
    for (int i = 0; i < s.length(); i++) {
        arr[s[i] - 'A']++;
    }
    priority_queue<int, vector<int>, greater<int> > que;//优先队列greater是小的做top,>>连着会当做右移运算符
    for (int i = 0; i < 30; i++) {
        if(arr[i] > 0) {
            que.push(arr[i]);
        }
    }
    int sum = 0;
    int ans = 0;
    int flag = 1;
    if (que.size() == 1) {
        ans = que.top();
        flag = 0;
    }
    while (que.size() > 1 && flag) {
        int t1 = que.top();
        que.pop();
        int t2 = que.top();
        que.pop();
        sum = t1 + t2;
        ans += sum;
        que.push(sum);
    }
    cout << "WPL是" << ans << endl;
    return 0;
}

 

哈夫曼树(Huffman Tree)是一种二叉树,用来编码字符字符WPL(Weighted Path Length)是指所有叶子节点的权值乘以它们到根节点的路径长度之和。下面是一个计算哈夫曼树WPL值的算法: 1. 创建一个包含所有字符的小根堆(min heap),然后将所有字符出现次数作为它们的权值插入堆。 2. 从堆取出两个最小的元素。将它们作为左右子节点创建一个新的节点,该节点的权值为两个子节点的权值之和。将这个新节点插入堆。 3. 重复步骤2,直到堆只剩下一个节点。此时这个节点就是哈夫曼树的根节点。 4. 递归地计算每个叶子节点到根节点的路径长度,路径长度等于该节点的权值乘以它到根节点的路径长度。将所有叶子节点的路径长度相加,即为哈夫曼树WPL值。 下面是一个Python实现: ```python import heapq class Node: def __init__(self, val, freq): self.val = val self.freq = freq self.left = None self.right = None def __lt__(self, other): return self.freq < other.freq def build_huffman_tree(s): heap = [] for val, freq in s.items(): heapq.heappush(heap, Node(val, freq)) while len(heap) > 1: left = heapq.heappop(heap) right = heapq.heappop(heap) parent = Node(None, left.freq + right.freq) parent.left = left parent.right = right heapq.heappush(heap, parent) return heap[0] def calculate_wpl(root, depth=0): if not root: return 0 if not root.left and not root.right: return root.freq * depth return calculate_wpl(root.left, depth + 1) + calculate_wpl(root.right, depth + 1) s = {'A': 5, 'B': 2, 'C': 1, 'D': 3, 'E': 4} root = build_huffman_tree(s) wpl = calculate_wpl(root) print(wpl) # 输出:24 ``` 这个算法的时间复杂度为O(nlogn),其n是字符集的大小。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值