题目描述 传送门
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1…N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.
学习了斜率优化DP,在这里重新整理一遍思路。
(我不会告诉你我才知道斜率公式是:
yi−yjxi−xj
)
参考资料:
http://www.cnblogs.com/MashiroSky/p/6009685.html
http://www.cnblogs.com/kedebug/archive/2013/03/03/2941359.html
设
d(i)
为装完前
i
个玩具需要的最少花费。
如果预处理前缀和
sum(i)=∑k=1ic(k)
那么
d(i)=min{ d(j)+(i−j−1+sum(i)−sum(j)−L)2 }
设
s(i)=sum(i)+i
则
d(i)=min{ d(j)+(s(i)−s(j)−1−L)2 }
设
a(i)=s(i)−1−L
则
d(i)==min{ d(j)+(a(i)−s(j))2 }min{ d(j)+a(i)2−2a(i)s(j)+s(j)2 }
设
kixjyjbi====2a(i)s(j)d(j)+s(j)d(i)−a(i)2
则
kixj+bi=yj
要求 d(i) 最小即求 bi 最小。
结合图像,显然最优的点 (xi,yi) 在下凸包上,用单调队列维护下凸包。
pop 队首的条件为
slope(q[head],q[head]+1)<ki
pop 队尾的条件为
slope(q[tail],i)<=slope(q[tail−1],q[tail])
代码
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define x(A) (s[A]+A)
#define y(A) (d[A]+x(A)*x(A))
#define k(A) (double)(2*(x(A)-1-l))
using namespace std;
typedef long long LL;
const int maxn=50010;
LL d[maxn],s[maxn],q[maxn];
inline double slope(int i,int j){
return (double)(y(j)-y(i))/(double)(x(j)-x(i));
}
int main(){
int n,l;
cin>>n>>l;
s[0]=d[0]=0;
for(int i=1;i<=n;i++){
int x;
scanf("%d",&x);
s[i]=s[i-1]+x;
}
int head=0,tail=0;
q[0]=0;
for(int i=1;i<=n;i++){
while(head<tail&&slope(q[head],q[head+1])<=k(i)) head++;
d[i]=-(k(i)*x(q[head])-y(q[head])-k(i)*k(i)/4);
while(head<tail&&slope(q[tail],q[tail-1])>slope(q[tail],i)) tail--;
q[++tail]=i;
}
printf("%lld\n",d[n]);
return 0;
}