BZOJ 1010 [HNOI2008]玩具装箱toy


题目描述 传送门
P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1…N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过L。但他希望费用最小.


学习了斜率优化DP,在这里重新整理一遍思路。
(我不会告诉你我才知道斜率公式是: yiyjxixj )
参考资料:
http://www.cnblogs.com/MashiroSky/p/6009685.html
http://www.cnblogs.com/kedebug/archive/2013/03/03/2941359.html

d(i) 为装完前 i 个玩具需要的最少花费。

d(i)=min{ d(j)+(ij1+k=j+1ic(k)L)2 | 0j<i}

如果预处理前缀和

sum(i)=k=1ic(k)

那么
d(i)=min{ d(j)+(ij1+sum(i)sum(j)L)2 }


s(i)=sum(i)+i


d(i)=min{ d(j)+(s(i)s(j)1L)2 }


a(i)=s(i)1L


d(i)==min{ d(j)+(a(i)s(j))2 }min{ d(j)+a(i)22a(i)s(j)+s(j)2 }


kixjyjbi====2a(i)s(j)d(j)+s(j)d(i)a(i)2


kixj+bi=yj

要求 d(i) 最小即求 bi 最小。
结合图像,显然最优的点 (xi,yi) 在下凸包上,用单调队列维护下凸包。
pop 队首的条件为
slope(q[head],q[head]+1)<ki

pop 队尾的条件为
slope(q[tail],i)<=slope(q[tail1],q[tail])

代码

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#define x(A) (s[A]+A)
#define y(A) (d[A]+x(A)*x(A))
#define k(A) (double)(2*(x(A)-1-l))
using namespace std;
typedef long long LL;
const int maxn=50010;
LL d[maxn],s[maxn],q[maxn];
inline double slope(int i,int j){
    return (double)(y(j)-y(i))/(double)(x(j)-x(i));
}
int main(){
    int n,l;
    cin>>n>>l;
    s[0]=d[0]=0;
    for(int i=1;i<=n;i++){ 
        int x;
        scanf("%d",&x);
        s[i]=s[i-1]+x;
    }
    int head=0,tail=0;
    q[0]=0;
    for(int i=1;i<=n;i++){
        while(head<tail&&slope(q[head],q[head+1])<=k(i)) head++;
        d[i]=-(k(i)*x(q[head])-y(q[head])-k(i)*k(i)/4);
        while(head<tail&&slope(q[tail],q[tail-1])>slope(q[tail],i)) tail--;
        q[++tail]=i;
    }
    printf("%lld\n",d[n]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值