Tyvj P4869 罪犯分组


题目描述 传送门


一看完题就觉得是状压DP。
DP方程不难想:设 d(S) 为集合 S 需要的最小分组数。
那么

d(S)=min{ d(SS0)+1 | S0S,S01 }

要枚举全集的所有子集的所有子集,时间复杂度是多少呢?答案是 O(3n) ( 结果我记成枚举一个集合的所有子集要 O(3n) )
全集的所有子集有 nk=0Ckn 个,每个子集的子集有 ki=0Cik=2k 个,总的有:

k=0nCkn2k=k=0nCkn1nk2k=(1+2)n=3n
(二项式定理)
先预处理好每个集合可否分为一组,然后就DP了。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
bool g[20][20];
int f[1<<17],d[1<<17];
int main(){
    int n,m,k;
    cin>>n>>m>>k;
    for(int i=0;i<m;i++){
        int a,b;
        scanf("%d%d",&a,&b);
        g[a][b]=g[b][a]=1;
    }
    for(int i=0;i<n;i++) f[1<<i]=0;
    for(int i=1;i<(1<<n);i++)
        for(int j=16;j>=0;j--) if(i&(1<<j)){
            int s=i^(1<<j);
            f[i]=f[s];
            for(int k=16;k>=0;k--)
                if((1<<k)&s) if(g[j+1][k+1]) f[i]++;
            break;
        }
    for(int i=1;i<(1<<n);i++) d[i]=1e9;
    for(int i=1;i<(1<<n);i++)
        for(int s=i;s;s=(s-1)&i)
            if(f[s]<=k) d[i]=min(d[i],d[i^s]+1);
    printf("%d\n",d[(1<<n)-1]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值