原题目链接
题意是给你一棵树,然后有两类操作,一种是将某个节点以及它所有的子孙修改成某个数,另一种是查询该节点的值。所有节点的初始值为-1;
思路
说实话不好联想到线段树上来,如果用暴力修改每棵子树的话每次修改的复杂度都可以达到O(n),不过我当时想到可以另外建立一棵结构相同的懒惰标记的树。但是复杂度并没有变化。
在学习图论的时候学DFS生成树的时候有一个叫做括号引理的结论。对于每个节点u,设dTime[u]为该节点首次发现(discover)时间,fTime[u]为节点访问结束(finish)时间,那么整个节点的活跃期
active[u] = ( dTime[u], fTime[u] )
给定任意图G=(V,E)及其任意DFS森林,则
u是v的后代 iff active[u] ⊆ active[v]
u是v的祖先 iff active[u[ ⊇ active[v]
由该结论就能通过节点的DFS序来确定节点的关系。而活跃期就成功将树映射到了区间。这种修改也就可以和线段树建立关系了。
#include<iostream>
#include<limits.h>
#include<vector>
#include<string>
#include<stdlib.h>
#include<algorithm>
#include<map>
#include<cstdlib>
#include<stack>
#include<set>
#include<cmath>
#include<queue>
#include<stdio.h>
#include<cstring>
//#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+10;
const int inf = 0x3f3f3f3f;
const double dinf = 1061109567.0;
typedef long long ll;
ll sum[maxn<<2];
ll lazy[maxn<<2];
ll n,m;
//链式前向星
struct Edge{
int next,to;
};
Edge edge[maxn];
int cnt;
int head[maxn];
void add(int u,int v){
edge[cnt].to=v;
edge[cnt].next=head[u];
head[u]=cnt++;
}
//通过dfs计算各节点的活跃期
int dTime[maxn],fTime[maxn];
void dfs(int v,int &clock){
if(!dTime[v]) dTime[v]=clock++;//发现时间是先序
for(int i=head[v];i!=-1;i=edge[i].next){
dfs(edge[i].to,clock);
}
if(!fTime[v]) fTime[v]=clock++;//结束时间是后序
}
//线段树
void pushdown(ll rt,ll l,ll r){
ll mid=(l+r)>>1;
ll lc=(rt<<1);
ll rc=(rt<<1|1);
if(lazy[rt]){
lazy[lc]=lazy[rt];
lazy[rc]=lazy[rt];
sum[lc]=(lazy[rt]);
sum[rc]=(lazy[rt]);
lazy[rt]=0;
}
}
void build(ll l,ll r,ll rt){
lazy[rt]=0;
if(l==r){
//scanf("%lld",&sum[rt]);
sum[rt]=-1;
return;
}
ll mid=(l+r)>>1;
build(l,mid,rt<<1);
build(mid+1,r,rt<<1|1);
//pushup(rt);
}
void update(ll LL,ll RR,ll val,ll l,ll r,ll rt){
ll mid=(l+r)>>1;
if(LL<=l&&RR>=r){
sum[rt]=val;
lazy[rt]=val;
return ;
}
pushdown(rt,l,r);
if(LL<=mid) update(LL,RR,val,l,mid,rt<<1);
if(RR>mid) update(LL,RR,val,mid+1,r,rt<<1|1);
//pushup(rt);
}
//意是单点查询
ll query(ll p,ll l,ll r,ll rt){
if(l==r)
return sum[rt];
ll mid=(l+r)>>1;
pushdown(rt,l,r);
if(p<=mid) return query(p,l,mid,rt<<1);
else return query(p,mid+1,r,rt<<1|1);
}
//根据出度确定根节点
bool indegree[maxn];
int main(){
//freopen("input.txt","r",stdin);
int t;
scanf("%d",&t);
for(int kase=1;kase<=t;kase++){
scanf("%lld",&n);
for(int i=1;i<=n;i++){
head[i]=-1;
}
cnt=0;
int u,v;
memset(indegree,false,sizeof(indegree));
for(int i=1;i<n;i++){
scanf("%d%d",&u,&v);
add(v,u);
indegree[u]=1;
}
int root;
for(int i=1;i<=n;i++){
if(!indegree[i]){
root=i;
break;
}
}
memset(dTime,0,sizeof(dTime));
memset(fTime,0,sizeof(fTime));
int clock=1;
dfs(root,clock);
clock--;//注意所有节点dfs结束之后clock还自加了一次
build(1,clock,1);
char op[10];
ll l,r,pos;
scanf("%lld",&m);
printf("Case #%d:\n",kase);
while(m--){
scanf("%s",op);
if(op[0]=='C'){
scanf("%lld",&pos);
printf("%lld\n",query(dTime[pos],1,clock,1));
}
else{
scanf("%lld%lld",&l,&r);
update(dTime[l],fTime[l],r,1,clock,1);
}
}
}
return 0;
}