[如何在问答应用程序中添加聊天历史]

# 如何在问答应用程序中添加聊天历史

在许多问答应用程序中,我们希望允许用户进行对话式的互动,这意味着应用程序需要某种形式的“记忆”来记录过去的问题和答案,并且需要一些逻辑来将这些历史信息纳入当前的思考过程中。

在本指南中,我们将重点介绍如何添加用于整合历史消息的逻辑。我们将介绍两种方法:
- **链式方法**:每次执行检索步骤以获取相关上下文。
- **代理方法**:给予LLM(大型语言模型)决定是否以及如何执行一个或多个检索步骤的自主权。

为了外部知识来源,我们将使用由Lilian Weng撰写的关于自主代理的博客文章。

## 环境设置与依赖

我们将使用OpenAI嵌入和Chroma向量存储,但这里展示的内容可以适用于任何Embeddings和VectorStore或Retriever。

```shell
%%capture --no-stderr
%pip install --upgrade --quiet langchain langchain-community langchain-chroma bs4

我们需要设置环境变量OPENAI_API_KEY,可以直接设置或者从.env文件中加载:

import getpass
import os

if not os.environ.get("OPENAI_API_KEY"):
    os.environ["OPENAI_API_KEY"] = getpass.getpass()

# import dotenv
# dotenv.load_dotenv()

使用LangSmith进行追踪

尽管LangSmith不是必须的,但它可以帮助我们追踪应用程序的执行过程。如果使用LangSmith,创建账号后设置环境变量以记录追踪信息:

os.environ["LANGCHAIN_TRACING_V2"] = "true"
if not os.environ.get("LANGCHAIN_API_KEY"):
    os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()

实现链式方法

在一个对话式RAG应用程序中,发给检索器的查询应该受到对话上下文的影响。LangChain提供了一个create_history_aware_retriever构造器来简化这一过程。

使用不同的LLM

我们可以使用任何支持的聊天模型,如OpenAI、Anthropic、Azure等。以下是如何设置一个OpenAI聊天模型的示例代码:

pip install -qU langchain-openai

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()

from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-3.5-turbo")

构建检索器

使用WebBaseLoader从网页加载内容并创建一个检索器:

import bs4
from langchain.chains import create_retrieval_chain
from langchain_chroma import Chroma
from langchain_community.document_loaders import WebBaseLoader
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter

loader = WebBaseLoader(
    web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
    bs_kwargs=dict(parse_only=bs4.SoupStrainer(class_=("post-content", "post-title", "post-header")))
)
docs = loader.load()

text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
retriever = vectorstore.as_retriever()

组装链式检索器

使用create_history_aware_retriever结合上下文化的提示创建历史感知的检索器:

from langchain.chains import create_history_aware_retriever
from langchain_core.prompts import MessagesPlaceholder, ChatPromptTemplate

contextualize_q_system_prompt = (
    "Given a chat history and the latest user question "
    "which might reference context in the chat history, "
    "formulate a standalone question which can be understood "
    "without the chat history. Do NOT answer the question, "
    "just reformulate it if needed and otherwise return it as is."
)

contextualize_q_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", contextualize_q_system_prompt),
        MessagesPlaceholder("chat_history"),
        ("human", "{input}"),
    ]
)

history_aware_retriever = create_history_aware_retriever(
    llm, retriever, contextualize_q_prompt
)

添加聊天历史

使用BaseChatMessageHistoryRunnableWithMessageHistory管理聊天历史:

from langchain_community.chat_message_histories import ChatMessageHistory
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_core.runnables.history import RunnableWithMessageHistory

store = {}

def get_session_history(session_id: str) -> BaseChatMessageHistory:
    if session_id not in store:
        store[session_id] = ChatMessageHistory()
    return store[session_id]

conversational_rag_chain = RunnableWithMessageHistory(
    rag_chain,
    get_session_history,
    input_messages_key="input",
    history_messages_key="chat_history",
    output_messages_key="answer",
)

# Example invocation
conversational_rag_chain.invoke(
    {"input": "What is Task Decomposition?"},
    config={"configurable": {"session_id": "abc123"}}
)["answer"]

使用代理方法

代理允许LLM在执行过程中做决策。其行为虽不如链式方法可预测,但在某些情况下提供了优势,比如对检索步骤的灵活处理。

构建检索工具

将检索器转换为LangChain工具,让代理来使用:

from langchain.tools.retriever import create_retriever_tool

tool = create_retriever_tool(
    retriever,
    "blog_post_retriever",
    "Searches and returns excerpts from the Autonomous Agents blog post."
)
tools = [tool]

设置代理执行器

使用LangGraph构建代理:

from langgraph.checkpoint.sqlite import SqliteSaver
from langgraph.prebuilt import create_react_agent

memory = SqliteSaver.from_conn_string(":memory:")
agent_executor = create_react_agent(llm, tools, checkpointer=memory)

状态管理与执行

使用以下代码进行状态管理和查询执行:

config = {"configurable": {"thread_id": "abc123"}}
query = "What is Task Decomposition?"

for s in agent_executor.stream(
    {"messages": [HumanMessage(content=query)]}, config=config
):
    print(s)
    print("----")

总结与下一步

我们已经展示了如何构建基本的对话问答应用程序:

  • 使用链构建一个生成检索查询的应用;
  • 使用代理构建一个具有“决定”能力的应用。

要探索不同类型的检索器和检索策略,或深入了解LangChain的对话记忆抽象,请访问相关指导文档。

如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值