基于LQR最优控制算法实现的轨迹跟踪控制,建立了基于车辆的质心侧偏角、横摆角速度

本文介绍了基于LQR最优控制算法实现的车辆轨迹跟踪控制,通过建立四自由度动力学模型,实时计算最优K值以控制前轮转角,确保精确跟踪。仿真结果显示该方法效果良好,适用于自动驾驶和智能交通系统。
摘要由CSDN通过智能技术生成

基于LQR最优控制算法实现的轨迹跟踪控制,建立了基于车辆的质心侧偏角、横摆角速度,横向误差,航向误差四自由度动力学模型作为控制模型,通过最优化航向误差和横向误差,实时计算最优的K值,计算期望的前轮转角实现轨迹跟踪,仿真效果良好,有对应的资料

基于LQR最优控制算法实现的轨迹跟踪控制

在汽车领域,轨迹跟踪控制是一个非常重要的问题。如何在复杂的道路环境中实现车辆的精确控制,是汽车自动驾驶和智能交通系统中需要解决的核心技术问题之一。目前,LQR最优控制算法是实现轨迹跟踪控制的一种主流方法。

LQR最优控制算法基于线性二次型优化问题,其控制器是通过最小化系统状态的平方加权和来实现最优化控制。在轨迹跟踪控制中,我们需要建立一种能够准确反映车辆运动状态和控制需求的动力学模型。此处我们基于车辆的质心侧偏角、横摆角速度,横向误差,航向误差四自由度动

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值