MsgPack的浅浅理解

前言

记得18年3月刚刚入职的时候,企业邮箱收到的第一个事故报告就是说在bean中添加字段没有加在字段序的最后导致线上出问题,我只是知其然不知其所以然。于是趁着过年没有紧急任务,查阅一些资料充充电。

MsgPack是何方神圣

直接看官方的解释吧,说的挺明白的:

MessagePack is an efficient binary serialization format. It lets you exchange data among multiple languages like JSON. But it’s faster and smaller. Small integers are encoded into a single byte, and typical short strings require only one extra byte in addition to the strings themselves.
MessagePack 是一个高效的二进制序列化格式。它让你像JSON一样可以在各种语言之间交换数据。但是它比JSON更快、更小。小的整数会被编码成一个字节,短的字符串仅仅只需要比它的长度多一字节的大小。

官方还用一句话总结了一下:

It’s like JSON.
but fast and small.
就像JSON,但更快更小。

我司的RPC(远程服务调用方案)序列化反序列化方式就是用的MsgPack,要求新加的字段必须在bean字段序的最后,为什么?与Hessian序列化比较方便理解。

MsgPack与Hessian的区别

区别

MsgPack序列化的时候,按照字段顺序写入字段值,理解为数组;
Hessian序列化的时候,写入字段名称然后写入字段值,理解为map(K-V)。

差距

MsgPack产生的数据更小,从而在数据传输过程中网络压力更小;
MsgPack(数组取值)比Hessian(map取值)性能更好;
MsgPack兼容性差,必须按照顺序保存字段,Hessian可以随意位置添加字段;
MsgPack是二进制序列化格式,兼容跨语言;
MsgPack不支持匿名集合类(例如List.subList(),Map.keySet(),Collections.emptyList(),Guava的匿名集合类)。

总结

正式因为MsgPack是按照字段顺序写入字段值,所以不能随意插入字段。
为了性能及跨语言兼容性,这些牺牲是值得的。使用msgpack序列化,在保证客户端与服务端的接口类文件必须保持一致!!

======================= MessagePack for Python ======================= :author: INADA Naoki :version: 0.4.1 :date: 2014-02-17 .. image:: https://secure.travis-ci.org/msgpack/msgpack-python.png :target: https://travis-ci.org/#!/msgpack/msgpack-python What's this ------------ `MessagePack <http://msgpack.org/>`_ is a fast, compact binary serialization format, suitable for similar data to JSON. This package provides CPython bindings for reading and writing MessagePack data. Install --------- You can use ``pip`` or ``easy_install`` to install msgpack:: $ easy_install msgpack-python or $ pip install msgpack-python PyPy ^^^^^ msgpack-python provides pure python implementation. PyPy can use this. Windows ^^^^^^^ When you can't use binary distribution, you need to install Visual Studio or Windows SDK on Windows. (NOTE: Visual C++ Express 2010 doesn't support amd64. Windows SDK is recommanded way to build amd64 msgpack without any fee.) Without extension, using pure python implementation on CPython runs slowly. Notes ----- Note for msgpack 2.0 support ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ msgpack 2.0 adds two types: *bin* and *ext*. *raw* was bytes or string type like Python 2's ``str``. To distinguish string and bytes, msgpack 2.0 adds *bin*. It is non-string binary like Python 3's ``bytes``. To use *bin* type for packing ``bytes``, pass ``use_bin_type=True`` to packer argument. >>> import msgpack >>> packed = msgpack.packb([b'spam', u'egg'], use_bin_type=True) >>> msgpack.unpackb(packed, encoding='utf-8') ['spam', u'egg'] You shoud use it carefully. When you use ``use_bin_type=True``, packed binary can be unpacked by unpackers supporting msgpack-2.0. To use *ext* type, pass ``msgpack.ExtType`` object to packer. >>> import msgpack >>> packed = msgpack.packb(msgpack.ExtType(42, b'xyzzy')) >>> msgpack.unpackb(packed) ExtType(code=42, data='xyzzy') You can use it with ``default`` and ``ext_hook``. See below. Note for msgpack 0.2.x users ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The msgpack 0.3 have some incompatible changes. The default value of ``use_list`` keyword argument is ``True`` from 0.3. You should pass the argument explicitly for backward compatibility. `Unpacker.unpack()` and some unpack methods now raises `OutOfData` instead of `StopIteration`. `StopIteration` is used for iterator protocol only. How to use ----------- One-shot pack & unpack ^^^^^^^^^^^^^^^^^^^^^^ Use ``packb`` for packing and ``unpackb`` for unpacking. msgpack provides ``dumps`` and ``loads`` as alias for compatibility with ``json`` and ``pickle``. ``pack`` and ``dump`` packs to file-like object. ``unpack`` and ``load`` unpacks from file-like object. :: >>> import msgpack >>> msgpack.packb([1, 2, 3]) '\x93\x01\x02\x03' >>> msgpack.unpackb(_) [1, 2, 3] ``unpack`` unpacks msgpack's array to Python's list, but can unpack to tuple:: >>> msgpack.unpackb(b'\x93\x01\x02\x03', use_list=False) (1, 2, 3) You should always pass the ``use_list`` keyword argument. See performance issues relating to use_list_ below. Read the docstring for other options. Streaming unpacking ^^^^^^^^^^^^^^^^^^^ ``Unpacker`` is a "streaming unpacker". It unpacks multiple objects from one stream (or from bytes provided through its ``feed`` method). :: import msgpack from io import BytesIO buf = BytesIO() for i in range(100): buf.write(msgpack.packb(range(i))) buf.seek(0) unpacker = msgpack.Unpacker(buf) for unpacked in unpacker: print unpacked Packing/unpacking of custom data type ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ It is also possible to pack/unpack custom data types. Here is an example for ``datetime.datetime``. :: import datetime import msgpack useful_dict = { "id": 1, "created": datetime.datetime.now(), } def decode_datetime(obj): if b'__datetime__' in obj: obj = datetime.datetime.strptime(obj["as_str"], "%Y%m%dT%H:%M:%S.%f") return obj def encode_datetime(obj): if isinstance(obj, datetime.datetime): return {'__datetime__': True, 'as_str': obj.strftime("%Y%m%dT%H:%M:%S.%f")} return obj packed_dict = msgpack.packb(useful_dict, default=encode_datetime) this_dict_again = msgpack.unpackb(packed_dict, object_hook=decode_datetime) ``Unpacker``'s ``object_hook`` callback receives a dict; the ``object_pairs_hook`` callback may instead be used to receive a list of key-value pairs. Extended types ^^^^^^^^^^^^^^^ It is also possible to pack/unpack custom data types using the msgpack 2.0 feature. >>> import msgpack >>> import array >>> def default(obj): ... if isinstance(obj, array.array) and obj.typecode == 'd': ... return msgpack.ExtType(42, obj.tostring()) ... raise TypeError("Unknown type: %r" % (obj,)) ... >>> def ext_hook(code, data): ... if code == 42: ... a = array.array('d') ... a.fromstring(data) ... return a ... return ExtType(code, data) ... >>> data = array.array('d', [1.2, 3.4]) >>> packed = msgpack.packb(data, default=default) >>> unpacked = msgpack.unpackb(packed, ext_hook=ext_hook) >>> data == unpacked True Advanced unpacking control ^^^^^^^^^^^^^^^^^^^^^^^^^^ As an alternative to iteration, ``Unpacker`` objects provide ``unpack``, ``skip``, ``read_array_header`` and ``read_map_header`` methods. The former two read an entire message from the stream, respectively deserialising and returning the result, or ignoring it. The latter two methods return the number of elements in the upcoming container, so that each element in an array, or key-value pair in a map, can be unpacked or skipped individually. Each of these methods may optionally write the packed data it reads to a callback function: :: from io import BytesIO def distribute(unpacker, get_worker): nelems = unpacker.read_map_header() for i in range(nelems): # Select a worker for the given key key = unpacker.unpack() worker = get_worker(key) # Send the value as a packed message to worker bytestream = BytesIO() unpacker.skip(bytestream.write) worker.send(bytestream.getvalue()) Note about performance ------------------------ GC ^^ CPython's GC starts when growing allocated object. This means unpacking may cause useless GC. You can use ``gc.disable()`` when unpacking large message. `use_list` option ^^^^^^^^^^^^^^^^^^ List is the default sequence type of Python. But tuple is lighter than list. You can use ``use_list=False`` while unpacking when performance is important. Python's dict can't use list as key and MessagePack allows array for key of mapping. ``use_list=False`` allows unpacking such message. Another way to unpacking such object is using ``object_pairs_hook``. Test ---- MessagePack uses `pytest` for testing. Run test with following command: $ py.test .. vim: filetype=rst
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值