- 博客(14)
- 收藏
- 关注
原创 GFPGAN源码分析—第十四篇
项目总结1.简述思想本项目主要是利用预训练好的GAN生成器(StyleGAN)作为先验实现低质量人脸图片的修复论文中提到:(1) We leverage rich and diverse generative facial priors for blind face restoration. Those priors contain sufficient facial tex-tures and color information, allowing us to jointly perf.
2021-12-27 16:05:46 2623
原创 GFPGAN源码分析—第十三篇
2021SC@SDUSC源码:models\gfpgan_model.py本篇分析models\gfpgan_model.py下的class GFPGANModel(BaseModel) 类的最后几个方法目录class GFPGANModel(BaseModel)_log_validation_metric_valuesget_current_visuals(self)save(self, epoch, current_iter)class GFPGANMod
2021-12-27 15:10:23 1059
原创 GFPGAN源码分析—第十二篇
2021SC@SDUSC源码:models\gfpgan_model.py本篇分析models\gfpgan_model.py下的class GFPGANModel(BaseModel) 类的部分方法class GFPGANModel(BaseModel)目录class GFPGANModel(BaseModel)test(self)dist_validation()nondist_validation()test(self)测试def test(s
2021-12-27 15:07:42 1198
原创 GFPGAN源码分析—第十一篇
2021SC@SDUSC源码:models\gfpgan_model.py本篇分析models\gfpgan_model.py下的class GFPGANModel(BaseModel) 类的部分方法目录class GFPGANModel(BaseModel)gray_resize_for_identity()optimize_parameters(self, current_iter) class GFPGANModel(BaseModel)gray_.
2021-12-27 15:03:09 2018
原创 GFPGAN源码分析—第十篇
2021SC@SDUSC源码:models\gfpgan_model.py本篇继续分析init.py与models\gfpgan_model.py下的class GFPGANModel(BaseModel) 类get_roi_regions() 方法目录class GFPGANModel(BaseModel)construct_img_pyramid(self)get_roi_regions()class GFPGANModel(BaseModel)constru
2021-12-26 23:37:46 1192
原创 GFPGAN源码分析—第九篇
2021SC@SDUSC源码:archs\gfpganv1_clean_arch.py本篇主要分析gfpganv1_clean_arch.py下的class GFPGANv1Clean(nn.Module)类forward( ) 方法
2021-12-26 23:32:14 1298
原创 GFPGAN源码分析—第八篇
2021SC@SDUSC源码:models\init.pymodels\gfpgan_model.py本篇主要分析init.py与models\gfpgan_model.py下的class GFPGANModel(BaseModel) 类init(self, opt) 方法目录init.pygfpgan_model.pyclass GFPGANModel(BaseModel)init(self, opt)init_training_settings(self)
2021-12-26 23:24:46 1096
原创 GFPGAN源码分析—第七篇
2021SC@SDUSC源码:archs\gfpganv1_clean_arch.py本篇主要分析gfpganv1_clean_arch.py下的class GFPGANv1Clean(nn.Module)类forward( ) 方法目录forward( )(1)设置Style-GAN 编码器(2)style code(3)解码(4)两个参数都为none,在此处并未用到(5)解码器decoderforward( )参数: (
2021-12-06 22:51:30 495
原创 GFPGAN源码分析—第六篇
2021SC@SDUSC源码:archs\gfpganv1_clean_arch.py本篇主要分析gfpganv1_clean_arch.py下的class GFPGANv1Clean(nn.Module)类_init_()方法目录class GFPGANv1Clean(nn.Module)init()(1)channels的设置(2)调用torch.nn.Conv2d()创建了一层卷积神经网络(3)下采样(downsample)(4)上采样(upsample)
2021-12-06 22:51:20 2720 2
原创 GFPGAN源码分析—第五篇
2021SC@SDUSC源码:archs\gfpganv1_clean_arch.py本篇主要分析gfpganv1_clean_arch.py下的以下两个类class StyleGAN2GeneratorCSFT (StyleGAN2GeneratorClean):StyleGanclass ResBlock(nn.Module):残差网络class StyleGAN2GeneratorCSFT (StyleGAN2GeneratorClean):继承了StyleGAN2Gene
2021-12-06 22:51:07 809
原创 GFPGAN源码分析—第四篇
2021SC@SDUSC源码:utils.py本篇主要分析utils.py中的class GFPGANer的enhance()方法,该方法实现了图像的修复enhance( )参数:(self, img, has_aligned=False, only_center_face=False, paste_back=True)(1).清空之前初始化的face_helper的所有参数#查看clean_all函数的实现def clean_all(self): self.all_
2021-12-06 22:50:52 1209 1
原创 GFPGAN源码分析—第三篇
源码:utils.py本篇主要分析utils.py中的class GFOGANer ( )1.获取当前项目路径ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))os.path.abspath(file)获取当前文件的绝对路径C:\Users\Vaifer\Desktop\GFPGAN-v.0.2.1\gfpgan\utils.pyos.path.dirname()再获取该文件所在的目录路径C:\
2021-12-06 22:50:23 2531
原创 GFPGAN源码分析—第二篇
2021SC@SDUSC源码:inference_gfpgan.py主要包含一个main函数,执行inference,下面我们看一下具体操作1.创建一个 ArgumentParser 对象,ArgumentParser 对象包含将命令行解析成 Python 数据类型所需的全部信息。即修复图像所需要的参数路径等等parser = argparse.ArgumentParser()'''调用 add_argument() 方法添加参数'''parser.add_argument('--up
2021-12-06 22:49:15 1798
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人