08-图7 公路村村通 (30分)

第一个代码:邻接表+Prim

第二个代码:邻接表+Kruskal

#include <iostream>
#include <vector>
#include <queue>
using namespace std;

struct Edge {
    Edge(const int &a, const int &b, const int &w):
        indexA(a), indexB(b), weight(w) {}

    int indexA;
    int indexB;
    int weight;
};

bool operator<(const Edge &x, const Edge &y) {
    return x.weight > y.weight;
}

class Graph {
public:
    Graph(const int &c);
    ~Graph();
    void insertEdge(const int &a, const int &b, const int &w);
    int PrimMST(const int &index);

private:
    struct Vertex {
        bool isVisited;
        vector<Edge> edgeVec;
    };
    int capacity;
    Vertex *pVertex;
};

inline
Graph::Graph(const int &c):
    capacity(c),
    pVertex(new Vertex[c]()) {}

inline
Graph::~Graph() {
    delete[] pVertex;
}

inline
void Graph::insertEdge(const int &a, const int &b, const int &w) {
    pVertex[a].edgeVec.emplace_back(Edge(a, b, w));
    pVertex[b].edgeVec.emplace_back(Edge(b, a, w));
}

int Graph::PrimMST(const int &index) {
    vector<int> vertexVec;
    vertexVec.reserve(capacity);
    priority_queue<Edge> edgeMinHeap;

    vertexVec.push_back(index);
    pVertex[index].isVisited = true;
    int edgeCnt(0);
    int ret(0);

    while(edgeCnt < capacity - 1) {
        int tmp(vertexVec.back());
        auto end(pVertex[tmp].edgeVec.end());
        for(auto iter(pVertex[tmp].edgeVec.begin()); iter != end; ++iter) {
            if(!pVertex[iter->indexB].isVisited)
                edgeMinHeap.emplace(*iter);
        }

        if(edgeMinHeap.empty()) break;      //没有待选边了。

        Edge minEdge(edgeMinHeap.top());
        edgeMinHeap.pop();
        int next(minEdge.indexB);
        if(!pVertex[next].isVisited) {
            vertexVec.push_back(next);
            pVertex[next].isVisited = true;
            ret += minEdge.weight;
            ++edgeCnt;
        }

    }

    if(edgeCnt == capacity - 1) //所有边已收录。
        return ret;
    else                        //不是连通图。
        return -1;
}


int main(void) {
    int n, m;
    cin >> n >> m;
    Graph g(n);
    int a, b, w;
    for(int i(0); i < m; ++i) {
        cin >> a >> b >> w;
        g.insertEdge(a-1, b-1, w);
    }

    cout << g.PrimMST(0) << endl;

    return 0;
}

用vector<unordered_set...来作为点的集合的集合,不知道相对于vector<vector...的性能如何。

用set点集,只需要判断set里是否有这个点,来确定顶点在哪个集合。

用verctor作为点集,则需要遍历一遍vector(内层的)。

在这两个代码中,用邻接表+Kruskal在最大的N和M上,效率不如邻接表+Prim。

#include <iostream>
#include <vector>
#include <queue>
#include <unordered_set>
using namespace std;

struct Edge {
    Edge(const int &a, const int &b, const int &w):
        indexA(a), indexB(b), weight(w) {}

    int indexA;
    int indexB;
    int weight;
};

bool operator<(const Edge &x, const Edge &y) {
    return x.weight > y.weight;
}

class Graph {
public:
    Graph(const int &c);
    ~Graph();
    void insertEdge(const int &a, const int &b, const int &w);
    int KruskalMST();

private:
    struct Vertex {
        bool isVisited;
        vector<Edge> edgeVec;
    };
    int capacity;
    Vertex *pVertex;
};

inline
Graph::Graph(const int &c):
    capacity(c),
    pVertex(new Vertex[c]()) {}

inline
Graph::~Graph() {
    delete[] pVertex;
}

inline
void Graph::insertEdge(const int &a, const int &b, const int &w) {
    pVertex[a].edgeVec.emplace_back(Edge(a, b, w));
    pVertex[b].edgeVec.emplace_back(Edge(b, a, w));
}

int Graph::KruskalMST() {
    priority_queue<Edge> edgeMinHeap;
    for(int i(0); i < capacity; ++i) {
        auto iter(pVertex[i].edgeVec.begin());
        auto end(pVertex[i].edgeVec.end());
        for(; iter != end; ++iter) {
            //怎样防止重复收边呢?
            if(iter->indexA < iter->indexB)
                edgeMinHeap.emplace(*iter);
        }
    }

    if((int)edgeMinHeap.size() < capacity - 1) return -1;    //不可能有生成树。

    vector<unordered_set<int>> vertexSets;
    int edgeCnt(0);
    int ret(0);

    while(edgeCnt < capacity-1 && !edgeMinHeap.empty()) {
        Edge minEdge(edgeMinHeap.top());
        edgeMinHeap.pop();

        int indexA(minEdge.indexA);
        int indexB(minEdge.indexB);
        //表示顶点所在集合的索引
        int labelA(-1);
        int labelB(-1);
        //找出顶点所在的集合索引。
        for(unsigned i(0); i < vertexSets.size(); ++i) {
            if(labelA == -1 && vertexSets[i].count(indexA) > 0)
                labelA = i;
            if(labelB == -1 && vertexSets[i].count(indexB) > 0)
                labelB = i;
        }

        if(labelA == -1 && labelB == -1) {
            unordered_set<int> newSet;
            newSet.emplace(indexA);
            newSet.emplace(indexB);
            vertexSets.push_back(newSet);
        }
        else if(labelA == -1 && labelB != -1)
            vertexSets[labelB].emplace(indexA);
        else if(labelA != -1 && labelB == -1)
            vertexSets[labelA].emplace(indexB);
        else if(labelA == labelB)                   //相等且不等于-1,意味着在同一个集合中。舍弃边。
            continue;
        else {
            vertexSets[labelA].insert(vertexSets[labelB].begin(), vertexSets[labelB].end());
            vertexSets.erase(vertexSets.begin() + labelB);
        }

        ++edgeCnt;
        ret += minEdge.weight;
    }

    if(edgeCnt == capacity - 1) return ret;
    else return -1;
}


int main(void) {
    int n, m;
    cin >> n >> m;
    Graph g(n);
    int a, b, w;
    for(int i(0); i < m; ++i) {
        cin >> a >> b >> w;
        g.insertEdge(a-1, b-1, w);
    }

    cout << g.KruskalMST() << endl;

    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值