梯度下降算法要点

梯度下降思想

  1. 初始化待求参数初值;
  2. 按照梯度方向更新参数;
  3. 逐渐迭代,直到收敛;

学习率 α \alpha α选择

  • α \alpha α过小,计算较慢,需要迭代多次;
  • α \alpha α过大,导致震荡,可能无法收敛甚至发散;

其他

  • 针对凸函数,可以找到全局最优解;
  • 针对凹函数,常收敛至局部最优解;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值