- 博客(79)
- 收藏
- 关注
原创 Apache DolphinScheduler 实现了对 OceanBase 的元数据库支持
Apache DolphinScheduler 是一款开源的分布式工作流任务调度系统,它提供了可视化的工作流设计和调度功能,支持大数据任务的自动化调度和监控。最近的更新中,Apache DolphinScheduler 引入了对 OceanBase 数据库的元数据库支持,这为用户在大数据环境中管理和调度任务提供了更多选择。用户可以通过 DolphinScheduler 提供的可视化界面进行工作流的设计和调度,也可以通过 DolphinScheduler 提供的 API 进行任务的编程调度。
2023-09-22 23:41:02 188
原创 大数据驾马车:深入探索开源实现
总结起来,大数据驾马车的开源实现为我们提供了一个完整且强大的大数据处理和分析平台。它的核心组件(如Apache Hadoop、Apache Spark、Apache Hive和Apache Kafka)以及其他相关工具和框架,为我们处理和分析海量数据提供了方便、高效和灵活的方式。除了上述核心组件之外,大数据驾马车还有其他一些有用的工具和框架,例如Apache Storm(用于分布式流处理),Apache Flink(用于流式和批处理),以及Apache Zeppelin(用于大数据分析和可视化)等。
2023-09-22 21:33:07 87
原创 工业大数据的创新价值
工业大数据指的是通过收集、存储和分析大规模的工业数据,从中提取有价值的信息和知识,为企业的决策和运营提供支持和指导。故障预警与维修优化:基于工业大数据的分析,企业可以建立故障预警系统,及时发现设备的异常情况并预测可能发生的故障,提前采取维修措施,避免生产中断和损失。通过充分挖掘和分析工业大数据,企业可以获得更深入的洞察和理解,为决策者提供更准确的指导和支持,从而推动企业的创新和发展。同时,通过分析产品的历史数据和用户反馈,企业可以发现产品存在的问题和改进的空间,进一步提高产品的质量和竞争力。
2023-09-22 20:50:33 130
原创 使用Flink CDC从数据库采集数据,保证数据不丢失:实现断点续传机制
Flink CDC是Flink提供的一个用于捕获数据库变更的组件。它能够监视数据库中的更改操作,并将这些变更以流的形式传递给Flink应用程序进行处理。通过使用Flink CDC,我们可以实现实时的数据库数据同步和实时的数据分析。
2023-09-22 19:00:21 1797
原创 根据多个条件筛选文件的大数据处理方法
然后,将每个分区分配给不同的计算节点,让它们并行处理并返回满足条件的文件结果。最后,将各个节点返回的结果进行合并,即可得到最终的筛选结果。在大数据处理领域,经常需要根据多个条件从海量的文件中筛选出符合特定条件的数据。这个过程涉及到对海量文件进行高效的搜索和匹配,以及快速找到满足条件的文件。上述代码遍历了所有文件,对每个文件进行条件判断,符合条件的文件被添加到filtered_files列表中。接下来,我们需要定义文件匹配的条件。以上就是根据多个条件筛选文件的大数据处理方法的介绍及相应的源代码。
2023-09-22 18:44:21 56
原创 Flink 报错:无序的序列号导致 Broker 接收错误
为了解决这个问题,我们可以确保 Kafka 主题的分区数量不变,控制 Flink 任务的并行度,以及使用 Flink 的 Watermark 机制来处理乱序数据。如果有多个 Flink 任务同时从同一个 Kafka 主题消费数据,并且它们的并行度大于主题的分区数,那么就会发生并发消费。在生产环境中,应该避免频繁地增加或减少主题的分区数量,以免引起数据的重新分配。当 Kafka 集群发生变化时,例如增加或减少了分区数量,或者重新分配了分区到不同的 Broker 上,就可能导致分区的重新分配。
2023-09-22 17:07:21 271
原创 大数据分类与架构
本文将探讨大数据分类和架构的相关概念,并提供相应的源代码示例,帮助读者更好地理解和应用这些概念。通过合理的分类方法和有效的架构设计,可以更好地管理和利用大数据资源,为各行业带来更多的机遇和挑战。大数据分类是指将庞大的数据集按照一定的规则和标准进行划分和组织的过程。常见的大数据分类方法包括基于内容的分类、基于时间的分类和基于主题的分类等。基于内容的分类是根据数据的内容特征将数据进行分类。基于主题的分类是根据数据的主题或领域特征进行分类。基于时间的分类是按照数据的时间属性将数据进行分类。
2023-09-22 16:24:45 53
原创 检测泄露的类加载器(Leaked ClassLoader)在大数据环境中的应用
为了解决泄露问题,我们可以及时释放资源、使用WeakReference和WeakHashMap来管理类加载器相关的引用和数据,以及小心处理自定义类加载器的资源释放。如果类加载器在加载类后不再使用,但该类的定义仍然存在于内存中,这就被称为泄露的类加载器。然而,当在大规模的分布式系统中使用类加载器时,可能会出现泄露的类加载器问题。通过检测泄露的类加载器并采取相应的解决方法,我们可以有效地管理类加载器并避免潜在的内存泄漏问题。方法,我们可以获取已经卸载的类加载器的数量,从而检测是否存在泄露的类加载器。
2023-09-22 14:49:49 121
原创 Elasticsearch 高性能集群运维与架构设计
综上所述,Elasticsearch 高性能集群的运维和架构设计涉及到集群规模和分片设计、硬件和网络优化、负载均衡和高可用性以及性能调优。一个较小的集群可以由几个节点组成,而一个大规模的集群可能包含数百个节点。在处理大数据和高负载环境下,Elasticsearch 是一个强大的工具,用于构建高性能的搜索和分析解决方案。分片是 Elasticsearch 中数据的基本单元,每个分片都是一个独立的索引,可以被分布在集群中的不同节点上。通过将数据分散到多个分片中,可以实现数据的并行处理,提高搜索和分析的性能。
2023-09-22 14:19:33 57
原创 Flink编译时报错:存在太多未经批准许可的文件
确保项目中的所有文件都附带了适当的许可证信息。总结起来,当Flink编译过程中报错"Too many files with unapproved license"时,我们应该审查并更新项目中的许可证信息,确保所有文件都附带适当的许可证声明。这个错误通常是由于项目中的某些文件缺乏适当的许可证信息或使用了不允许的许可证导致的。移除未经批准的许可证文件:如果发现项目中存在未经批准的许可证文件,我们需要将其移除或替换为适当的许可证文件。确保所有使用的许可证都是合法、允许的,并且与Flink项目的许可证兼容。
2023-09-22 13:07:46 663
原创 字段数据:优化大数据处理的关键
通过使用数据库管理系统、数据框架和分布式计算框架,我们可以充分利用字段数据的优势,实现高效的大数据处理。字段数据的结构化特性和索引能力使得数据的管理和查询更加高效,而数据库管理系统、数据框架和分布式计算框架则提供了相应的工具和方法来实现这一目标。然而,大数据的处理涉及到海量的信息和复杂的数据结构,这就需要我们对数据进行有效的组织和管理。我们可以根据字段数据的特点进行数据聚合、过滤和排序等操作,进而获取我们感兴趣的信息。通过将数据划分为不同的字段,我们可以对每个字段进行独立的操作,而不需要处理整个数据集合。
2023-09-22 11:38:04 44
原创 大数据处理框架Flink:Table与SQL案例的准备、依赖和程序结构
Flink的Table API和SQL是其核心功能之一,它们为开发人员提供了一种以类似于关系型数据库的方式进行数据处理和分析的方法。通过遵循上述的程序结构,并结合具体的需求,您可以编写适用于自己应用场景的Flink Table与SQL的程序。其次,创建一个新的Java项目,并将Flink的相关依赖项添加到项目的构建文件中。为了使用Flink Table与SQL,需要在项目的构建文件中添加相应的依赖项。这是一个简单的Flink Table与SQL的程序结构示例,您可以根据具体的需求进行进一步的开发和扩展。
2023-09-22 10:05:41 84
原创 CSV 文件写入:使用 CsvWriter 进行追加写入的方法
在处理大数据时,我们经常需要将数据写入到 CSV 文件中。本文将介绍如何使用 CsvWriter 进行追加写入的方法,以便有效地处理大量数据。CsvWriter 是一个常用的 Python 库,用于将数据写入 CSV 文件。在上述示例中,我们首先写入了 CSV 文件的首行,即标题行。上述代码中,我们通过打开 CSV 文件、使用 CsvWriter 写入数据,然后关闭文件的步骤,成功实现了追加写入 CSV 文件的操作。最后,在完成数据写入后,我们应该关闭 CSV 文件,以释放资源并确保数据已被写入。
2023-09-22 05:25:08 958
原创 父子聚合:在未配置父字段时无法指定父项
通过按照上述步骤创建索引、定义父子关系,并正确执行聚合查询,我们可以成功解决“父子聚合无法指定父项,因为未配置父字段”的问题。通过按照上述步骤创建索引、定义父子关系,并正确执行聚合查询,我们可以成功解决“父子聚合无法指定父项,因为未配置父字段”的问题。当我们尝试在父子聚合中指定父项时,如果未配置父字段,Elasticsearch将无法识别父项的存在,从而导致错误的发生。当我们尝试在父子聚合中指定父项时,如果未配置父字段,Elasticsearch将无法识别父项的存在,从而导致错误的发生。
2023-09-22 01:31:44 66
原创 Flume系列:配置生产集群的env.sh参数(大数据)
为了确保Flume在生产环境中的高效运行,我们需要对其配置文件进行适当的参数设置。其中,env.sh文件是Flume启动脚本所使用的环境变量配置文件。请注意,以上步骤仅涉及env.sh文件的参数设置,其他Flume配置文件的修改可能也是必需的,以适应您的生配置文件的修改可能也是必需的,以适应您的生产环境需求。这些参数的配置将确保Flume在生产环境中的正确运行。在继续之前,确保env.sh文件具有执行权限。这将把Flume安装目录下lib目录中的所有JAR文件添加到Flume运行时的类路径中。
2023-09-22 00:43:46 214
原创 大数据处理之巨兽Hadoop:深入解析Hadoop x
综上所述,Hadoop x作为大数据处理的巨兽,通过其强大的分布式计算能力和丰富的生态系统,帮助用户处理海量数据,实现高效的数据处理和分析任务。YARN负责集群资源的分配和任务调度,确保集群资源的高效利用。除了上述核心组件外,Hadoop x还提供了许多其他功能和工具,如Sqoop用于数据导入导出、Hive用于数据仓库和查询、Spark用于高级数据分析等。Hadoop x是基于Apache Hadoop项目的扩展版本,它在原有Hadoop框架的基础上进行了一些改进和优化,提供了更强大的功能和性能。
2023-09-21 20:53:05 45
原创 CentOS 7配置文件的最大打开数以支持大数据处理
其中之一是修改CentOS 7的文件最大打开数(file-max),以确保系统可以处理更多的文件描述符。在本篇文章中,我将介绍如何修改CentOS 7的文件最大打开数,以适应大数据处理需求。通过修改sysctl.conf和limits.conf文件,并重新加载配置,我们可以有效地提高系统的性能和可扩展性。通过以上步骤,我们成功地修改了CentOS 7的文件最大打开数,以适应大数据处理需求。现在,我们已经成功地修改了文件最大打开数。然而,为了确保修改的持久性,我们还需要修改另一个文件limits.conf。
2023-09-21 19:37:27 568
原创 大数据处理框架Flink:流批一体API连接器Kafka
Apache Flink是一个强大的大数据处理框架,它提供了丰富的API和工具,用于实时流式处理和批处理。其中,与Kafka的连接器使得Flink能够与Kafka消息队列集成,实现高效可靠的数据流传输和处理。接下来,我们将使用Flink的DataStream API和Kafka连接器来构建一个简单的示例。通过这种集成,您可以轻松地将Flink的强大数据处理功能与Kafka的消息队列相结合,实现高效可靠的数据流传输和处理。首先,我们需要确保已经正确安装和配置了Flink和Kafka。请注意,上述代码中的。
2023-09-21 19:06:08 112
原创 大数据技术解析
接下来,对数据进行清洗和转换,筛选出年龄大于18岁的数据,并选择姓名、年龄和性别这三列。它的核心目标是从庞大的数据集中提取有用的信息和洞察力,以支持决策制定、业务优化和预测分析等应用。本文将介绍大数据技术的概念、原理和常见的应用,并提供相关的源代码示例。大数据技术的发展为我们提供了处理海量数据的能力,并为各行各业带来了巨大的机遇和遇和挑战。通过分析大量的交易数据和用户行为数据,可以构建风险模型,识别潜在的欺诈行为和异常交易。通过分析大规模的病历数据和基因数据,可以发现疾病的预测指标和个体化治疗方案。
2023-09-21 18:18:57 70
原创 大数据处理:使用Flink实现数量驱动的滚动窗口和滑动窗口
通过以上示例,我们可以看到如何使用Flink实现数量驱动的滚动窗口和滑动窗口。在实际的大数据处理中,根据具体的需求和场景,可以灵活地调整窗口的大小和滑动步长,以满足不同的业务需求。其中,滚动窗口和滑动窗口是两种常用的窗口操作,用于对数据流进行分组和聚合。滚动窗口是一种固定大小的窗口,它按照固定的大小对数据流进行划分。滑动窗口是一种可以重叠的窗口,它在固定的大小上滑动一定的步长。本文将介绍如何使用Flink实现数量驱动的滚动窗口和滑动窗口,并提供相应的源代码示例。方法对窗口中的数据进行聚合操作,并使用。
2023-09-21 16:24:28 153
原创 使用Python批量下载Harvard Dataverse中的大数据
然后,使用BeautifulSoup库对页面进行解析,找到所有具有"download-button"类的链接元素,这些链接包含了我们需要下载的数据集。接下来,我们创建一个名为"downloads"的文件夹来保存下载的数据。首先,我们需要确定要下载的数据集的URL。在Harvard Dataverse中,数据集通常以页面的形式展示,并且每个数据集都有一个唯一的URL。你可以将上述代码保存为一个Python脚本,并根据需要修改dataset_url变量的值为你想要下载的数据集的URL。
2023-09-21 11:43:45 272
原创 在有限的时间内重新索引大规模数据的问题是一个具有挑战性的任务
重新索引是指将已有的数据重新构建索引,通常是为了改善性能、修复索引错误或应用新的数据映射。上述代码中,我们首先连接到 Elasticsearch 集群,并指定源索引和目标索引的名称。然后,我们从源索引中扫描所有文档,并使用批量操作的方式将文档重新索引到目标索引中。本文将介绍如何在一个 Elasticsearch 集群中重新索引一亿份文档的方法,并提供相应的源代码。接下来,我们需要创建一个新的索引,用于存储重新索引后的文档。最后,我们刷新目标索引,以确保所有文档都可搜索。的索引,其中包含需要重新索引的文档。
2023-09-21 10:50:06 41
原创 大数据智能拓客CRM系统的价值与效用
首先,它可以帮助企业进行客户分类和细分,将客户按照不同的特征和行为进行分类,从而更好地了解不同客户群体的需求和偏好,并制定相应的营销策略。此外,大数据智能拓客CRM系统还可以帮助企业进行销售预测和业绩分析,通过对历史销售数据和市场趋势的分析,预测销售额和市场需求,为企业提供决策依据。综上所述,大数据智能拓客CRM系统是真实存在的,并且具有广泛的应用价值。通过对大量的客户数据进行收集、存储和分析,系统可以提供深入的客户洞察,帮助企业了解客户需求、行为和偏好,从而有针对性地制定营销策略和销售计划。
2023-09-21 09:27:23 235
原创 分布式快照算法:改进的 Chandy-Lamport 算法在大数据环境中的应用
分布式系统中的快照算法是一种重要的技术,用于记录系统中各个进程的状态和通信通道的消息。其中,Chandy-Lamport 算法是一种经典的分布式快照算法,用于实现分布式系统的一致性检查点。本文将介绍改进的 Chandy-Lamport 算法在大数据环境中的应用,并提供相应的源代码。以上是改进的 Chandy-Lamport 算法在大数据环境中的应用的详细介绍和相关源代码。这种算法通过优化实现,提高了在大规模分布式系统中进行快照的效率和可扩展性,能够更好地满足大数据环境下的需求。函数执行快照完成后的操作。
2023-09-21 09:15:10 71
原创 大数据任务管理器中的数据流转和图示
通过数据准备、任务执行和数据合并等步骤,数据可以在任务管理器之间进行高效地流转和处理。但是,这些示例可以帮助读者理解数据在任务管理器之间流转的一般过程,并为实际应用提供参考。在大数据领域中,任务管理器是一个关键的组件,用于协调和管理各种数据处理任务。本文将详细介绍数据在任务管理器之间的流转过程,并提供相应的源代码示例。在上述示例中,首先创建了一个SparkContext对象,然后加载各个任务管理器上的结果数据集。希望本文对大数据任务管理器中的数据流转有所帮助,如果有任何疑问助,如果有任何疑问,请随时提问。
2023-09-21 07:40:23 143
原创 触发器实现 Apache DolphinScheduler 失败钉钉自动告警
我们将利用触发器来监控任务的执行状态,并在任务失败时触发钉钉自动告警。我们通过实现一个告警发送器,利用 DolphinScheduler 的触发器机制,在任务执行失败时自动发送钉钉告警消息。上述代码是一个实现了 AlertSender 接口的失败钉钉告警发送器。在 DolphinScheduler 的配置文件中,可以指定告警发送器的实现类和触发器的失败策略。通过以上配置和代码的实现,当任务执行失败时,DolphinScheduler 将自动触发我们的失败钉钉告警发送器,发送告警消息到指定的钉钉群组或用户。
2023-09-21 06:36:03 180
原创 提高召回率的技术在大数据领域的应用
这些技术的应用可以提升搜索引擎、推荐系统和信息检索系统等应用的性能和用户体验,为用户提供准确和有用的结果。通过将任务分发到多个计算节点上,并进行结果的合并和汇总,分布式计算可以有效地应对大规模数据和复杂计算任务,提高召回率和系统性能。在大数据领域,提高召回率是一项至关重要的任务。在许多应用中,如搜索引擎、推荐系统和信息检索系统中,高召回率能够提供更准确和全面的结果,从而提升用户体验和系统性能。在搜索引擎中,可以使用查询解析和语义理解等技术,对用户的查询进行分析和优化,以提供更准确和全面的搜索结果。
2023-09-21 05:25:34 111
原创 解决pipreqs中的UnicodeDecodeError错误
在使用pipreqs工具生成Python项目的依赖文件时,有时可能会遇到UnicodeDecodeError错误,错误消息中可能会显示类似于"gbk codec can’t decode byte x: illegal multibyte sequence 大数据"的内容。通过检查项目中的文件编码格式,我们可以确定是否存在编码不一致的情况,并尝试将所有文件统一为相同的编码格式。如果上述方法仍然无法解决问题,我们可以尝试检查项目文件的编码格式,并确保所有文件都使用相同的编码。步骤 3: 检查文件编码格式。
2023-09-21 03:59:14 627
原创 新的密钥序列化器需与先前的密钥序列化器兼容
当我们需要更新密钥序列化器时,确保新的序列化器与先前使用的序列化器兼容是非常关键的。然后,我们使用新的密钥序列化器将先前序列化的字节流反序列化为Key对象。综上所述,为了确保新的密钥序列化器与先前的序列化器兼容,我们需要了解先前序列化器的数据格式,设计新的序列化器与之兼容,并进行测试验证。通过运行测试代码,如果输出结果显示原始Key和反序列化的Key的值相等,那么我们可以确定新的密钥序列化器与先前的序列化器是兼容的。接下来,我们设计新的密钥序列化器,以确保与先前的序列化器兼容。
2023-09-21 02:23:34 45
原创 大数据处理与分析技术
其中,Hadoop是一个开源的大数据处理框架,它包括Hadoop分布式文件系统(Hadoop Distributed File System,HDFS)和MapReduce计算模型。通过合理利用大数据系统和运用各种分析技术,我们能够从海量的数据中提取有价值的信息,为决策和业务发展提供支持。无论是使用Hadoop进行大数据处理,还是利用机器学习算法进行大数据分析,这些技术都为我们提供了强大的工具来应对数据时代的挑战。大数据系统和分析技术能够帮助组织和企业从庞大的数据集中提取有价值的信息和洞察力。
2023-09-21 01:30:14 256
原创 大数据:揭开数据海洋的秘密
在大数据处理的过程中,一个重要的概念是分布式计算。这些工具的共同目标是帮助我们处理和分析海量的数据,从中挖掘出有价值的信息,用于业务决策、产品优化、市场营销等方面。大数据就是指这种庞大、复杂且不断增长的数据集合,无论是结构化数据(如数据库中的表格)还是非结构化数据(如文本、图像和音频),都可以被纳入大数据的范畴。大数据并不仅仅是指数据的规模,更重要的是它的处理和分析方法。由于传统的数据处理工具和技术已经无法胜任大数据的挑战,因此发展出了一系列的大数据技术和工具,以帮助我们从数据中提取有用的信息和洞察。
2023-09-20 23:14:10 42
原创 使用Flink实现延迟数据处理与调用
通过以上的代码示例,我们可以实现在Flink中对延迟数据进行处理并延时调用相应的逻辑。当订单数据到达后,会根据订单的创建时间设置一个定时器,在延时时间到达后触发相应的处理逻辑。在示例中,我们简单地将延迟处理的结果输出到控制台,实际应用中可以根据需求进行相应的处理。总结起来,Flink提供了延时调用的设计与实现方案,通过将延迟数据存储在状态中,并设置定时器来触发相应的处理逻辑。延时调用的设计思想是将延迟数据存储在状态中,并设置一个定时器,在一定的时间后触发相应的处理逻辑。最后,我们将定义好的。
2023-09-20 21:45:35 255
原创 大数据处理平台Hadoop:深入了解Hadoop
通过Hadoop的分布式计算能力和生态系统的支持,你可以处理和分析海量数据,并从中获得有价值的见解和信息。方法中,我们将输入的文本行拆分为单个单词,并将每个单词作为键,值设置为1,然后将其写入上下文(Context)中。以上示例只是Hadoop的一个简单示例,Hadoop提供了更多强大的功能和API,可用于解决各种大数据处理问题。Spark:一个快速、通用的大数据处理引擎,支持在内存中进行数据处理,并提供了丰富的API和库。方法中,我们将相同键的所有值相加,以计算每个单词的总出现次数,并将结果写入上下文。
2023-09-20 20:33:19 154
原创 大数据开发工程师必备技能解析
综上所述,作为一名大数据开发工程师,掌握编程语言、大数据处理框架、数据库和SQL知识、数据仓库和ETL工具、数据结构和算法以及数据可视化工具是必不可少的。掌握数据可视化工具如Tableau、Power BI和matplotlib等,可以帮助大数据开发工程师将复杂的数据转化为易于理解的图表和图形。数据仓库和ETL工具:了解数据仓库和ETL(抽取、转换和加载)工具对于大数据开发工程师也非常重要。掌握常见的数据结构和算法,如哈希表、排序算法和图算法,将有助于优化大数据处理过程。
2023-09-20 19:22:10 58
原创 MySQL在线安装步骤及大数据应用
通过以上步骤,您已成功地完成了MySQL的在线安装,并学习了一些常用的MySQL操作。现在,我们可以通过MySQL的客户端工具(如MySQL Shell或MySQL Workbench)连接到MySQL服务器,并创建数据库。在本文中,我们将详细介绍如何在线安装MySQL,并探讨其在大数据应用中的一些常见用途。在安装MySQL之前,我们需要配置环境变量,以便系统能够正常识别MySQL的命令。打开系统的环境变量配置界面,将MySQL的安装路径添加到系统的PATH变量中。在创建数据表后,我们可以向其中插入数据。
2023-09-20 17:33:35 54
原创 Barrier机制:大数据并行计算中的同步技术
它通过控制任务在特定点进行同步,确保并行任务能够协调执行,避免数据竞争和不确定的结果。在实际的大数据处理中,合理地运用Barrier机制可以提高并行任务的效率和准确性。在第一个阶段中,任务被分配给不同的并行计算单元进行处理。当每个任务完成它们的计算后,它们将到达Barrier,等待其他任务完成。在大数据并行计算中,同步机制是一项关键技术,它确保了并行任务在必要时能够同步执行,以避免数据竞争和不确定的结果。当一个任务到达Barrier时,它必须等待所有其他任务都到达Barrier,然后才能继续执行。
2023-09-20 17:03:02 262
原创 Flink在YARN上的使用:使用HDFS JAR和yarn.provided.lib.dirs进行大数据处理
在这篇文章中,我们将探讨如何在YARN上使用Flink,并使用HDFS JAR和yarn.provided.lib.dirs属性进行大数据处理。通过上述配置和命令,Flink将在YARN集群上启动并执行你的作业。要在YARN上使用HDFS JAR,我们需要在Flink的配置文件中进行一些设置。上述配置将指定保存Flink应用程序的检查点和保存点的路径,并启用外部化保存点。要配置yarn.provided.lib.dirs属性,我们需要编辑Flink的yarn-site.xml文件。
2023-09-20 15:19:35 447
原创 Flink并行度探究:深入了解并行处理
在Flink中,每个流式任务都可以被划分为多个并行的子任务,这些子任务可以同时执行以提高整体的处理性能。每个子任务都是在独立的任务槽(Task Slot)中执行的,而一个任务槽则对应着一个计算资源(如一个线程或一个进程)。这样的设计使得Flink可以在集群中充分利用可用的计算资源,实现高效的并行处理。并行度是指每个算子(Operator)的并行任务数量,它决定了任务在集群中的并行度。在Flink中,可以通过设置并行度来控制任务的并行度,从而调整任务的执行方式和性能。
2023-09-20 14:33:17 150
原创 Zookeeper实战之:使用Watcher API监控节点存在情况
Zookeeper是一个分布式应用程序协调服务,它提供了一个层次化的命名空间,类似于文件系统,可以用于在分布式环境中存储和管理数据。本文将介绍如何使用Zookeeper的Watcher API来监控节点的存在性,并给出相应的源代码。通过这篇文章,希望读者能够理解并掌握如何利用Zookeeper的Watcher机制实现节点监控,进而在自己的项目中灵活运用。可以看到,当我们创建和删除测试节点时,Watcher对象会接收到相应的Watch事件,并执行相应的逻辑。方法中,根据Watch事件的类型来输出相应的信息。
2023-09-20 12:07:48 129
原创 大数据流处理:消息队列与Kafka的基本概述
消息队列是一种用于在分布式系统之间传递消息的通信模式。它解耦了消息的发送者和接收者,允许异步通信,并提供了可靠的消息传递机制。消息队列可以有效地处理大量数据,并且具备高可用性和伸缩性。在消息队列中,消息发送者将消息发送到队列中,而消息接收者从队列中接收消息进行处理。消息队列通常遵循先进先出(FIFO)的原则,确保消息按照发送的顺序进行处理。以下是一个简单的示例,演示如何使用Python的消息队列库pika# 连接到消息队列服务器# 创建消息队列# 发送消息')# 定义消息接收的回调函数。
2023-09-20 10:27:25 37
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人