,如果一个字符串可以被拆分为
AABBAABB
的形式,其中
AA
和
BB
是任意非空字符串,则我们称该字符串的这种拆分是优秀的。
例如,对于字符串
aabaabaa
如果令
A=aab,A=aab
,
B=a,B=a
,我们就找到了这个字符串拆分成
AABBAABB
的一种方式。
一个字符串可能没有优秀的拆分,也可能存在不止一种优秀的拆分。比如我们令
A=a,A=a,B=baa,B=baa
,也可以用
AABBAABB
表示出上述字符串;但是,字符串
abaabaa
就没有优秀的拆分。
现在给出一个长度为
nn
的字符串
SS
我们需要求出,在它所有子串的所有拆分方式中,优秀拆分的总个数。这里的子串是指字符串中连续的一段。
以下事项需要注意:
出现在不同位置的相同子串,我们认为是不同的子串,它们的优秀拆分均会被记入答案。
在一个拆分中,允许出现
A=B,A=B
。例如
cccc
存在拆分
A=B=cA=B=c
。
字符串本身也是它的一个子串。
首先很容易想到要求两个东西:
fi
表示
i
位置之前以
gi
表示
i
位置之后以
那么最后的答案就是
∑leni=1fi∗gi
了。
然而我只会用后缀数组打
O(n2)
的算法。。。所以一个点过不了QAQ
大概想法就是求LCP然后乱来就好了。
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;
inline int Min(int a, int b) {
return a < b ? a : b;
}
inline int Max(int a, int b) {
return a > b ? a : b;
}
const int N = 60010, INF = 1 << 30;
struct SuffixArray {
int buc[N], SA[N], y[N], x[N];
int height[N], rank[N];
int f[N];
int m, len;
char s[N];
void Init(char* a, int l, bool d) {
len = l;
if (d) for (int i = 0; i < l; i++) s[i] = a[i];
else for (int i = 0; i < l; i++) s[l - i - 1] = a[i];
s[l] = 1;
GetSA(); GetHeight(); GetF();
}
void GetSA(void) {
m = N - 10;
for (int i = 0; i < m; i++) buc[i] = 0;
for (int i = 0; i < len; i++) buc[x[i] = s[i]]++;
for (int i = 1; i < m; i++) buc[i] += buc[i - 1];
for (int i = len - 1; i >= 0; i--) SA[--buc[x[i]]] = i;
for (int k = 1; k <= len; k <<= 1) {
int p = 0;
for (int i = len - 1; i >= len - k; i--) y[p++] = i;
for (int i = 0; i < len; i++) if (SA[i] >= k) y[p++] = SA[i] - k;
for (int i = 0; i < m; i++) buc[i] = 0;
for (int i = 0; i < len; i++) buc[x[y[i]]]++;
for (int i = 1; i < m; i++) buc[i] += buc[i - 1];
for (int i = len - 1; i >= 0; i--) SA[--buc[x[y[i]]]] = y[i];
swap(x, y);
p = 1; x[SA[0]] = 0;
for (int i = 1; i < len; i++) {
if (y[SA[i - 1]] == y[SA[i]] && y[SA[i - 1] + k] == y[SA[i] + k])
x[SA[i]] = p - 1;
else x[SA[i]] = p++;
}
if (p >= len) break;
m = p;
}
}
void GetHeight(void) {
int j, k = 0;
for (int i = 0; i < len; i++) rank[SA[i]] = i;
for (int i = 0; i < len; i++) {
if (rank[i] == 0) {height[0] = 0; continue;}
if (k) k--;
int j = SA[rank[i] - 1];
while (s[i + k] == s[j + k] && i + k < len && j + k < len) k++;
height[rank[i]] = k;
}
}
void GetF(void) {
int lcp, x, y;
for (int i = 0; i < len; i++) f[i] = 0;
for (int i = 0; i < len; i++) {
lcp = INF;
for (int j = i + 1; j < len; j++) {
if (!(lcp = Min(lcp, height[j]))) break;
x = SA[i]; y = SA[j];
if (x > y) swap(x, y);
if (lcp >= y - x) f[y + y - x - 1]++;
}
}
}
int operator *(const SuffixArray &a) {
int res = 0;
for (int i = 0; i < len; i++)
res += a.f[i] * f[len - i - 2];
return res;
}
};
SuffixArray a, b;
int test, l;
char s[N];
int main(void) {
scanf("%d\n", &test);
while (test--) {
gets(s); l = strlen(s);
a.Init(s, l, 1); b.Init(s, l, 0);
printf("%d\n", a * b);
}
return 0;
}