NOI2016 优秀的拆分 [后缀数组]

,如果一个字符串可以被拆分为 AABBAABB 的形式,其中 AA BB 是任意非空字符串,则我们称该字符串的这种拆分是优秀的。
例如,对于字符串 aabaabaa 如果令 A=aab,A=aab B=a,B=a ,我们就找到了这个字符串拆分成 AABBAABB 的一种方式。
一个字符串可能没有优秀的拆分,也可能存在不止一种优秀的拆分。比如我们令 A=a,A=aB=baa,B=baa ,也可以用 AABBAABB 表示出上述字符串;但是,字符串 abaabaa 就没有优秀的拆分。
现在给出一个长度为 nn 的字符串 SS 我们需要求出,在它所有子串的所有拆分方式中,优秀拆分的总个数。这里的子串是指字符串中连续的一段。
以下事项需要注意:
出现在不同位置的相同子串,我们认为是不同的子串,它们的优秀拆分均会被记入答案。
在一个拆分中,允许出现 A=B,A=B 。例如 cccc 存在拆分 A=B=cA=B=c
字符串本身也是它的一个子串。

首先很容易想到要求两个东西:
fi 表示 i 位置之前以i位置结尾的 AA 形式的方案数
gi 表示 i 位置之后以i+1位置起始的 BB 形式的方案数
那么最后的答案就是 leni=1figi 了。

然而我只会用后缀数组打 O(n2) 的算法。。。所以一个点过不了QAQ
大概想法就是求LCP然后乱来就好了。

#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;

inline int Min(int a, int b) {
    return a < b ? a : b;
}
inline int Max(int a, int b) {
    return a > b ? a : b;
}

const int N = 60010, INF = 1 << 30;

struct SuffixArray {
    int buc[N], SA[N], y[N], x[N];
    int height[N], rank[N];
    int f[N];
    int m, len;
    char s[N];
    void Init(char* a, int l, bool d) {
        len = l;
        if (d) for (int i = 0; i < l; i++) s[i] = a[i];
        else for (int i = 0; i < l; i++) s[l - i - 1] = a[i];
        s[l] = 1;
        GetSA(); GetHeight(); GetF();
    }
    void GetSA(void) {
        m = N - 10;
        for (int i = 0; i < m; i++) buc[i] = 0;
        for (int i = 0; i < len; i++) buc[x[i] = s[i]]++;
        for (int i = 1; i < m; i++) buc[i] += buc[i - 1];
        for (int i = len - 1; i >= 0; i--) SA[--buc[x[i]]] = i;
        for (int k = 1; k <= len; k <<= 1) {
            int p = 0;
            for (int i = len - 1; i >= len - k; i--) y[p++] = i;
            for (int i = 0; i < len; i++) if (SA[i] >= k) y[p++] = SA[i] - k;
            for (int i = 0; i < m; i++) buc[i] = 0;
            for (int i = 0; i < len; i++) buc[x[y[i]]]++;
            for (int i = 1; i < m; i++) buc[i] += buc[i - 1];
            for (int i = len - 1; i >= 0; i--) SA[--buc[x[y[i]]]] = y[i];
            swap(x, y);
            p = 1; x[SA[0]] = 0;
            for (int i = 1; i < len; i++) {
                if (y[SA[i - 1]] == y[SA[i]] && y[SA[i - 1] + k] == y[SA[i] + k])
                    x[SA[i]] = p - 1;
                else x[SA[i]] = p++;
            }
            if (p >= len) break;
            m = p;
        }
    }
    void GetHeight(void) {
        int j, k = 0;
        for (int i = 0; i < len; i++) rank[SA[i]] = i;
        for (int i = 0; i < len; i++) {
            if (rank[i] == 0) {height[0] = 0; continue;}
            if (k) k--;
            int j = SA[rank[i] - 1];
            while (s[i + k] == s[j + k] && i + k < len && j + k < len) k++;
            height[rank[i]] = k;
        }
    }
    void GetF(void) {
        int lcp, x, y;
        for (int i = 0; i < len; i++) f[i] = 0;
        for (int i = 0; i < len; i++) {
            lcp = INF;
            for (int j = i + 1; j < len; j++) {
                if (!(lcp = Min(lcp, height[j]))) break;
                x = SA[i]; y = SA[j];
                if (x > y) swap(x, y);
                if (lcp >= y - x) f[y + y - x - 1]++;
            }
        }
    }
    int operator *(const SuffixArray &a) {
        int res = 0;
        for (int i = 0; i < len; i++)
            res += a.f[i] * f[len - i - 2];
        return res;
    }
};
SuffixArray a, b;
int test, l;
char s[N];

int main(void) {
    scanf("%d\n", &test);
    while (test--) {
        gets(s); l = strlen(s);
        a.Init(s, l, 1); b.Init(s, l, 0);
        printf("%d\n", a * b);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值