乘法逆元小记

乘法逆元

  1. 逆元定义
  2. 求解方式
    ——1. 线性同余方程+扩展欧几里得算法
    ——2. 费马小定理+快速幂
    ——3. 线性递推式

乘法逆元的定义

对于一个整数 a ,以及一个整数 p,存在一个实数x 使得 ax≡c(mod p) ,则称 x 为 a 在 c 模 p意义下的逆元 。ax≡c(mod p) 表示ax与c模p具有相同的余数,即同余,也可表示为 np+c = ax(相当于把c当做ax%p的值,即表示为mc%p = ax%p时,m=1的情况)。举个例子,1/a为a在1模p下的逆元,也就是倒数。
逆元不唯一!

求解方式

  1. 线性同余方程+扩展欧几里得算法(logn)
    (1) 线性同余方程
    对于形如 ax≡c(mod b) 形式的同余一次方程,我们称为线性同余方程,打开后可以表示为
    ax = by + c ⇒ ax-by = c ⇒ ax + by = c
    这和扩展欧几里得算法的方程形似,即ax+by=gcd(a,b),只要在等式两边同乘 c/gcd(a,b) ,就可以得到 a(xc/gcd(a,b)) + b(yc/gcd(a,b)) = c, 那么,若 x0,y0 为ax+by=gcd(a,b)的一组解,相应的 ax + by = c的一组解为
    (x0)*c/gcd(a,b) , (y0)*c/gcd(a,b)
    那么通过这一组解我们可以求得ax + by = c的通解为x=(x0)*c/gcd(a,b) + k*b/gcd(a,b) (k∈Z)(因为这里只要求x,所以y的通解未列出)。

    (2). 最小非负整数解
    对于该通解,我们可以知道其周期T为T=b/gcd(a,b),根据这一点,可以求出ax + by = c的最小非负整数解 即x=( ( x % b/gcd(a,b) ) + b/gcd(a,b) ) % b/gcd(a,b):
    1.对于x为负数,x % b/gcd(a,b) 的结果为 x 的最大负整数解,并且取余后保证了|x % b/gcd(a,b) | < b/gcd(a,b), 那么 +b/gcd(a,b)后 ( x % b/gcd(a,b) ) + b/gcd(a,b) >= 0,也就是下一个答案周期,再取一次模,是为了防止若x % b/gcd(a,b) =0,加上b/gcd(a,b)后就不是最小非负了,因此再次取模。
    2.若x为整数,则该系列操作无影响。

  2. 费马小定理+快速幂(logn)
    1.费马小定理
    对于整数a,p, ap-a=np,即 ap≡a (mod p),两边同除以a,得 a(p-1)≡1 (mod p) 又因为 ax≡1 (mod p) ,可以得到 a(p-1)≡ax (mod p) ,所以x=a^(p-2)%p(即 a(p-2)≡x(mod p),那么当x为最小正逆元时,可以表示为,a(p-2)%p=x)。之后就可以通过快速幂求解。

  3. 线性递推(n)
    inv[i]为i在模P下的逆元,有递推式 inv[i]=(P-P/i)*inv[P%i]%P。(i=1~P-1)
    下面给出证明:
    设 t=P/i ,k=P%i, 那么必然有 i*t + k ≡ 0 (mod P) (即P≡0(mod P)),
    i*t + k ≡ 0 (mod P)→
    -i*t - k ≡ 0 (mod P)
    i*t ≡ k (mod P)
    (两边同时除以i*k) -t*k-1 ≡ i-1(mod P)
    -t*inv[k] ≡ inv[i] (mod P)
    inv[i] ≡ -t*inv[k](mod P)
    因为**系数为P的任何多项式在P的模下余数都为0,**那么
    inv[i] ≡ (P*inv[k]-t*inv[k])(mod P)
    此时将t与k带回得到
    inv[i] = (P-P/i)*inv[P/i]%(即保证inv[i]根据递推为最小逆元)
    证毕。
    下面是以一道模板乘法逆元,洛谷P3811.
    题目大意
    输入: n,p
    输出: n-1行,第i行表示i在1 mod p下的最小非负逆元。
    例:
    in: 10 13
    out:
    1
    7
    9
    10
    8
    11
    2
    5
    3
    4

线性递推逆元代码:

AC

//线性1~p-1逆元
//递推
#include<cstdio>
#include<iostream>
using namespace std;
const int maxn = 3e6+10;
int n,p;
long long inv[maxn];
	
void input(){
	scanf("%d%d",&n,&p);
	return;
}

void makeinv(int x){
	inv[1] = 1;
	printf("%lld\n",inv[1]);
	for(int i=2; i <= x; i++){
		//cout<<i<<" "<<p-p/i<<" "<<inv[p%i]<<endl;
		inv[i] = (p-p/i)*inv[p%i]%p;
		printf("%lld\n", inv[i]);
	}
	return;
}	

int main()
{
	input();
	makeinv(n);
	return 0;
}

扩展欧几里得算法
大数据会TLE

#include<cstdio>
int n,p;
int v,t;

void input(){
	scanf("%d%d",&n,&p);
	return;
}
//欧几里得求出一组特殊解,再衍生到通解
void extgcd(int a, int b, int&x, int&y){
	if(b == 0){
		x = 1;
		y = 0;
		return;
	}
	else{
		extgcd(b,a%b,y,x);
		y = y - (a/b)*x;	
	}
	return;
}

void print(int num){
	for(int i = 1; i <= num; i++)
	{
		extgcd(i,p,v,t);
		//a≡c (mod b)
		//由于该题中c与gcd(a,b)都为1,所以不需要对特解做过多处理。
		v=(v % p + p) % p;//保证最小非负整数
		printf("%d\n",v);
	}
	return;
}

int main()
{
	input();
	print(n);
	return 0;
}

费马小定理+快速幂
大数据会TLE

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<string>
const int maxn = 3e6+10;
typedef long long ll;
ll n,p;

void input(){
	scanf("%lld%lld",&n,&p);
	return;
}

//inline int mul(int a, int b) {return 1ll*a*b%p;}
ll fpow(ll x,ll y){
	ll res = 1;
	for (;y;y>>=1,x=x*x%p) if(y&1) res=res*x%p;//为了保证最小非负整数,需要在快速幂中不断取余
	return res;
}

void print(ll num){
	for(ll i = 1; i <= num; i++)
		printf("%d\n",fpow(i,p-2));
	return;
}

int main()
{
	input();
	print(n);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值