- 博客(5)
- 资源 (2)
- 收藏
- 关注
翻译 1.3 可扩展性
即使一个系统现在可以可靠地工作,但并不意味着未来它也一定会可靠地工作。造成退化的一个常见的原因就是日益增加的负载:系统的并发用户可能从10000增加到了100000,或者从1000000增加到10000000。可能它处理的数据量比之前大得多。可扩展性是我们用来描述一个系统处理增加的负载的能力。然而,它并不是一个我们可以贴到系统上的一维标签:说“X是可扩展的”或“Y不能扩展”是没有意义的。当然,讨论
2018-01-17 11:27:59 1714
翻译 1.2 可靠性
每个人对某些事物是否可靠都有直观的想法。对于软件,典型的期望包括:应用执行用户期望的功能可以容忍用户犯错或以意料之外的方法使用软件对于必需的用例,在期望的负载和数据量下,它的性能足够好系统可以阻止任何非授权的访问和滥用如果这些合在一起称之为“正常工作”,那么我们就可以简单的理解为“可靠性”是指“能够持续正常工作,即使发生故障”。发生问题就是指故障,系统对故障的预料和处理
2018-01-17 11:24:41 380
翻译 1.1 数据系统思想
我们普遍认为数据库、队列、缓存等等,是不同类别的工具。即使数据库和消息队列有一些表面上的相似性----都存储数据,它们有不同的访问模式,也就意味着不同的性能特点,从而有不同的实施方式。那么我们为什么要把他们全部混在一起在一个涵盖性术语下?比如数据系统。近几年出现了许多数据存储与处理的新工具。它们针对各种各样的用例做了优化,然后就不再恰好适用于传统的类别。例如,出现了同样适用消息队列的数据库
2018-01-17 11:23:41 218
翻译 1. 可靠、可伸缩、可维护的应用
与计算密集型系统相反,现在很多应用是数据密集型。对于这种应用,原始的CPU性能已经几乎不是限制因素了,更大的问题是数据量,数据复杂性和数据变更的速率。数据密集型应用通常由标准勾践提供常用的功能。例如,许多应用需要:存储数据以供自己活其他应用未来可以查询(数据库)记住高代价操作的结果,为了加速读取(缓存)允许用户使用不同的方式通过关键词查询或过滤数据(搜索索引)向其他进程发送
2018-01-17 11:18:38 257
翻译 Part1.数据系统基础
前四章讲述应用于所有数据系统的基本理念,不论是运行在单机还是分布式的机器集群上。第一章介绍我们将要使用的术语和方法。解释“可靠性、可扩展性和可维护性”的具体含义,以及我们如何去达到这些目标。第二章对比若干种不同的数据模型和查询语言,从开发者角度是不同数据库间最明显的区分因素。我们可以看到不同的数据模型如何适用于不同的业务场景。第三章转到内部存储引擎,探究数据库如何在磁盘上排列数据。不同
2018-01-17 11:14:48 216
侠客工具盒
2008-06-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人