自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(191)
  • 资源 (9)
  • 收藏
  • 关注

原创 剑指offer Java版 面试题14:剪绳子问题

题目描述给你一根长度为 n 的绳子,请把绳子减成 m 段(m、n都是整数,n > 1 并且 m >1),每段绳子的长度记为k[0], k[1],…,k[m]。请问k[0]*k[1]k[2]…*k[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成的长度为2、3、3三段,此时得到的最大乘积是18。测试用例功能测试(绳子的初始长度大于5)边界值测试(绳子的初始长度分别为0、1、2、3、4)题目考点考察应聘者的抽象建模能力。应聘者需要把一个具体的场景抽象成一个能够用动态

2020-12-02 20:10:45 8

原创 详解算法思想-动态规划

动态规划解题套路框架动态规划问题(Dynamic Programming)应该是很多读者头疼的,不过这类问题也是最具有技巧性,最有意思的。本书使用了整整一个章节专门来写这个算法,动态规划的重要性也可见一斑。刷题刷多了就会发现,算法技巧就那几个套路,我们后续的动态规划系列章节,都在使用本文的解题框架思维,如果你心里有数,就会轻松很多。所以本文放在第一章,来扒一扒动态规划的裤子,形成一套解决这类问题的思维框架,希望能够成为解决动态规划问题的一部指导方针。本文就来讲解该算法的基本套路框架,下面上干货。

2020-12-02 17:10:44 16

原创 剑指offer Java版 面试题13:机器人的运动范围

题目描述地上有一个 m 行和 n 列的方格。一个机器人从坐标 (0, 0) 的格子开始移动,它每次可以向左、右、上、下四个方向移动一格,但是不能进入行坐标和列坐标的 数位之和 大于 k 的格子。例如,当 k 为 18 时,机器人能够进入方格(35, 37),因为 3+5+3+7=18。但是,它不能进入方格(35, 38),因为 3+5+3+8=19。请问该机器人能够达到多少个格子?测试用例功能测试(方格为多行多列;k为正数)边界值测试(方格只有一行或者只有一列;k等于0)特殊输入测试(k为负数)

2020-12-02 11:31:01 7

原创 剑指offer Java版 面试题12:矩阵中的路径

题目描述请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。例如下面的矩阵包含了一条 bfce 路径。但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入该格子。测试用例功能测试(在多行多列的矩阵中存在或者不存在路径)边界值测试(矩阵只有一行或者只有一列;矩阵和

2020-11-28 18:49:02 26

原创 剑指offer Java版 面试题11:旋转数组的最小数字

题目描述把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个 非递减 排序的数组的一个旋转,输出旋转数组的最小元素。例如数组 {3, 4, 5, 1, 2} 为 {1, 2, 3, 4, 5} 的一个旋转,该数组的最小值为 1。NOTE:若数组大小为 0,请返回 0。测试用例功能测试(输入的数组是非递减排序数组的一个旋转,数组中有重复的数字或者没有重复的数字)边界值测试(输入的数组是一个非递减排序的数组,只包含一个数字的数组)特殊输入测试(输入空指针)题目考点考察

2020-11-28 15:15:14 8

原创 剑指offer Java版 面试题10_2:青蛙跳台阶问题

青蛙跳台阶问题解题思路:此类求 多少种可能性 的题目一般都有 递推性质 ,即 f(n) 和 f(n-1)…f(1)之间是有联系的。设跳上 n 级台阶有 f(n) 种跳法。在所有跳法中,青蛙的最后一步只有两种情况: 跳上 1 级或 2 级台阶。当为 1 级台阶: 剩 n-1个台阶,此情况共有 f(n-1) 种跳法;当为 2 级台阶: 剩 n-2 个台阶,此情况共有 f(n-2) 种跳法。f(n) 为以上两种情况之和,即 f(n)=f(n−1)+f(n−2)f(n)=f(n-1)+f(n-2

2020-11-26 17:22:09 10

原创 剑指offer Java版 面试题10:斐波那契数列

斐波那契数列写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项。斐波那契数列的定义如下:F(0) = 0, F(1) = 1F(N) = F(N - 1) + F(N - 2), 其中 N > 1.斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。解题思路:斐波那契数列的定义是f(n+1)=f(n)+f(n−1)f(n+1) =

2020-11-26 17:07:00 21

原创 剑指offer Java版 面试题9:用两个栈实现队列

剑指offer面试题9–两个栈实现队列用两个栈来实现一个队列,完成队列的Push和Pop操作。 队列中的元素为int类型。刚开始两个栈都是空的,要进队列,可以将元素压入任何一个栈,不妨就压入stack1中,我们知道元素在栈中是后进先出的,因此要出列需要删除stack1最底部的元素,此时stack2派上用场了,将stack1的元素再压入stack2中,现在元素的排列变成了原来插入的顺序,要出列的元素到了栈顶,要完成出列操作就很方便了。若要继续出列,只要stack2不为空,只需继续从stack2中出栈即

2020-11-26 16:09:29 36

原创 剑指Offer Java版 面试题7:重建二叉树

题目描述输入某二叉树的前序遍历和中序遍历的结果,请重建该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如前序遍历序列 {1, 2, 4, 7, 3, 5, 6, 8} 和中序遍历序列 {4, 7, 2, 1, 5, 3, 8, 6}二叉树的节点的定义如下:package com.offer._7;/** * @author :jhys * @date :Created in 2020/11/24 12:25 * @Description : */public class

2020-11-24 13:01:03 16

原创 详解目标检测的评价指标

在人工智能领域,机器学习的效果需要用各种指标来评价。当一个目标检测模型建立好了之后,即模型训练已经完成,我们就可以利用这个模型进行分类识别。那么该如何去评价这个模型的性能呢?今天我们从交并比,准确率,精度,召回率,FPR, F1-Score, PR曲线,ROC曲线,AP的值,AUC的值以及很重要的mAP指标,模型的检测速度和非极大值抑制的相关方面来学习下目标检测中的评价指标。1. 交并比 — IoU交并比IoU是英文intersection over union的简写,意思是检测结果的矩形..

2020-11-16 17:30:42 90

原创 剑指Offer Java版 面试题6:从尾到头打印链表

题目描述输入链表的第一个节点,从尾到头反过来打印出每个结点的值。链表节点定义如下:public class ListNode { int val; ListNode next = null; ListNode(int val) { this.val = val; } ListNode(){}}测试用例功能测试(输入的链表有多个节点;输入的链表只有一个节点)。 特殊输入测试(输入的链表头节点为空)题目考点考查应聘者对单向

2020-11-12 21:49:59 14

原创 剑指Offer Java版 面试题5:替换空格

题目描述请实现一个函数,将一个字符串中的空格替换成“%20”。例如,当字符串为 "We Are Happy". 则经过替换之后的字符串为 "We%20Are%20Happy"。测试用例输入的字符串包含空格(空格位于字符串的最前面;空格位于字符串的最后面;空间位于字符串的中间;字符串中有连续多个空格)。 输入的字符串没有空格。 特殊输入测试(字符串为空指针;字符串是一个空字符串)题目考点考察应聘者对字符串的编程能力。 考察应聘者分析时间效率的能力、我们要能清晰的分析出两种不同方法的时间

2020-11-12 20:28:23 6

原创 剑指Offer Java版 面试题4:二维数组中的查找

题目描述在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。例如下面的二维数组就是每行、每列都是递增排序,如果在这个数组中查找数字7,则放回true;如果查找数字5,由于数组不含该数字,则返回false。1 2 8 92 4 6 124 7 10 136 8 11 15测试用例二维数组中包含查找的数字(查找的数字是数组中的最大值和最小值;查找的数字介于数组中的最大值

2020-11-12 19:35:53 11

原创 剑指Offer Java版 面试题3:数组中重复的数字

题目描述找出数组中重复的数字。在一个长度为 n 的数组里的所有数字都在 0 到 n-1 的范围内。数组中某些数字是重复的,但不知道有几个数字是重复了,也不知道每个数字重复了几次。请找出数组中任意一个重复的数字。例如,如果输入长度为 7 的数组 {2, 3, 1, 0, 2, 5, 3},那么对应的输出是第一个重复的数字 2 或 3 。测试用例长度为n的数组包含一个或多个重复的数字。 数组中不包含重复的数字。 无效输入测试用例(输入数组为空;程度为n的数组中包含 0 到 n-1之外的数字.

2020-11-12 17:22:06 11

原创 剑指Offer Java版 面试题2: 实现Singleton(单例)模式

题目描述设计一个类,我们只能生成该类的一个实例。题目考点考察应聘者对单例模式的理解 考察应聘者对基础语法(Java)的理解 考察应聘者对多线程编程的理解解题思路使用一个私有构造函数、一个私有静态变量以及一个公有静态函数来实现。私有构造函数保证了不能通过构造函数来创建对象实例,只能通过公有静态函数返回唯一的私有静态变量。Static关键字:先介绍一下static关键字在Java中的应用:在《Java编程思想》P86页有这样一段话:  “static方法就是没有this

2020-11-11 21:40:32 15

原创 LeetCode刷题记录:3. 无重复字符的最长子串

给定一个字符串,请你找出其中不含有重复字符的最长子串的长度。示例1:输入: "abcabcbb"输出: 3解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。示例 2:输入: "bbbbb"输出: 1解释: 因为无重复字符的最长子串是 "b",所以其长度为 1。示例 3:输入: "pwwkew"输出: 3解释: 因为无重复字符的最长子串是"wke",所以其长度为 3。 请注意,你的答案必须是 子串 的长度,"pwke"是一个子...

2020-11-11 17:16:53 12

原创 LeetCode刷题记录:1. 两数之和

给定一个整数数组 nums和一个目标值 target,请你在该数组中找出和为目标值的那两个整数,并返回他们的数组下标。你可以假设每种输入只会对应一个答案。但是,数组中同一个元素不能使用两遍。示例:给定 nums = [2, 7, 11, 15], target = 9因为 nums[0] + nums[1] = 2 + 7 = 9所以返回 [0, 1]思路标签:哈希映射这道题本身如果通过暴力遍历的话也是很容易解决的,时间复杂度在 O(n2)O(n2)O(n2)由于哈希...

2020-11-11 15:42:46 9

原创 详解Java中的Map集合

java.util 中的集合类包含 Java 中某些最常用的类。最常用的集合类是 List 和 Map。Map 提供了一个更通用的元素存储方法。Map 集合类用于存储元素对(称作“键”和“值”),其中每个键映射到一个值。Map 接口中键和值一一映射. 可以通过键来获取值。给定一个键和一个值,你可以将该值存储在一个 Map 对象。之后,你可以通过键来访问对应的值。 当访问的值不存在的时候,方法就会抛出一个 NoSuchElementException 异常。 当对象的类型和 Map 里元素类型

2020-11-10 17:19:31 111 2

原创 详解JavaScript中的箭头函数

ES6标准新增了一种新的函数:Arrow Function(箭头函数)。常规函数定义:function() {}箭头函数,在定义函数时,移除了function,return和{}。无参数案例:const queue = ['Dave', 'Sarah', 'Sharon'];const nextCustomer = () => queue[0];console.log(nextCustomer()); // 'Dave'有参数案例:var a = [ "...

2020-10-22 10:56:25 52

原创 详解使用IDEA 整合 SSM (Spring + Spring MVC + MyBatis)框架教程

Spring 框架是 Java 应用最广的框架,它的成功来源于理念,而不是技术本身,它的理念包括IoC (Inversion of Control,控制反转)和AOP(Aspect Oriented Programming,面向切面编程)。什么是 Spring:Spring 是一个轻量级的 DI / IoC 和 AOP 容器的开源框架,来源于 Rod Johnson 在其著作《Expert one on one J2EE design and development》中阐述的部分理念和原型衍生...

2020-10-16 20:47:52 89

原创 详解Spring项目中的classpath路径

在java项目中,你一定碰到过classpath,通常情况下,我们是用它来指定配置/资源文件的路径。在刚开始学习的时候,自己也糊里糊涂,但是现在,是时候弄清楚它到底是指什么了。顾名思义,classpath就是class的path,也就是类文件(*.class的路径)。一谈到文件的路径,我们就很有必要了解一个java项目(通常也是web项目)它在真正运行时候,这个项目内部的目录、文件的结构;这样,我们才好分析、理解classpath。开发时期的web项目结构下面,我以一个ssm的项目为例,我先把开

2020-10-16 16:16:48 51

原创 【Java-web】详解tomcat服务器安装配置

Tomcat 服务器是一个免费的开放源代码的 Web 应用服务器,属于轻量级应用服务器,在中小型系统和并发访问用户不是很多的场合下被普遍使用,是开发和调试 JSP 程序的首选。本文主要讲述Windows环境Tomcat服务器安装与环境变量配置下载安装JDK要想安装Tomcat服务器,首先要安装配置好JDK,可以参考JDK安装与环境变量配置Windows + R然后输入cmd进入命令行窗口,检查Java是否安装正确,检查的命令为java -version下载Tomcat压缩包Tomcat有

2020-10-14 20:55:12 28

原创 详解Spring中的配置文件

不同于我们讲的pom.xml以及web.xml,这两个文件的名称是固定的,不可更改的,这里的设计采用的是约定优于配置的原则。而Spring的配置文件的名称是可以更改的,比如: <context-param> <param-name>contextConfigLocation</param-name> <param-value> /WEB-INF/spring-*.xml &

2020-10-13 20:57:21 19

原创 详解Spring项目中的web.xml配置文件

SpringMVC是创建java web项目时比较常用的框架,其中web.xml配置文件是更不可少的,那么首先先了解java web中的web.xml文件。web.xml的学名叫做部署描述文件(DD),它不是Spring所特有的,而是在Servlet规范中定义的,是web应用的配置文件。在tomcat容器启动后,会寻找项目中的web.xml文件,加载其中的信息,并创建一个ServletContext上下文对象,以后再web应用中可以获得其中的值。一、认识web.xml文件1、web.xml的作用

2020-10-13 17:21:47 213

原创 详解SpringMVC开发基础知识

一、SpringMVC分层架构MVC 设计概述在早期 Java Web 的开发中,统一把显示层、控制层、数据层的操作全部交给 JSP 或者 JavaBean 来进行处理,我们称之为Model1: 出现的弊端: JSP 和 Java Bean 之间严重耦合,Java 代码和 HTML 代码也耦合在了一起 要求开发者不仅要掌握 Java ,还要有高超的前端水平 前端和后端相互依赖,前端需要等待后端完成,后端也依赖前端完成,才能进行有效的测试 代码..

2020-10-13 16:18:10 42

原创 详解Spring 中的AOP面向切面编程

Spring AOP 简介如果说 IoC 是 Spring 的核心,那么面向切面编程就是 Spring 最为重要的功能之一了,在数据库事务中切面编程被广泛使用。AOP 即 Aspect Oriented Program 面向切面编程首先,在面向切面编程的思想里面,把功能分为核心业务功能,和周边功能。所谓的核心业务,比如登陆,增加数据,删除数据都叫核心业务 所谓的周边功能,比如性能统计,日志,事务管理等等周边功能在 Spring 的面向切面编程AOP思想里,即被定义为切面在面向切面编程

2020-10-10 21:32:29 21

原创 详解Spring 中的IOC容器

Spring IoC 概述IoC:Inverse of Control(控制反转)读作“反转控制”,更好理解,不是什么技术,而是一种设计思想,就是将原本在程序中手动创建对象的控制权,交由Spring框架来管理。 正控:若要使用某个对象,需要自己去负责对象的创建 反控:若要使用某个对象,只需要从 Spring 容器中获取需要使用的对象,不关心对象的创建过程,也就是把创建对象的控制权反转给了Spring框架 好莱坞法则:Don’t call me ,I’ll call youIoC中文名称为控制

2020-10-10 19:23:58 56

原创 【深度学习】:R-CNN论文详解

paper链接:Rich feature hierarchies for accurate object detection and semantic segmentationR-CNN:Regions + CNN创新点 使用CNN(ConvNet)对 region proposals 计算 feature vectors。从经验驱动特征(SIFT、HOG)到数据驱动特征(CNN feature map),提高特征对样本的表示能力。 采用大样本下(ILSVRC)有监督预训练和小样本(

2020-10-07 21:07:08 113 1

原创 【深度学习】:非极大值抑制(NMS)详解

非极大值抑制(Non-maximum suppression,NMS)是一种去除非极大值的算法,常用于计算机视觉中的边缘检测、物体识别等。Non-Maximum Suppression的翻译是非“极大值”抑制,而不是非“最大值”抑制。这就说明了这个算法的用处:找到局部极大值,并筛除(抑制)邻域内其余的值。算法流程:给出一张图片和上面许多物体检测的候选框(即每个框可能都代表某种物体),但是这些框很可能有互相重叠的部分,我们要做的就是只保留最优的框。假设有N个框,每个框被分类器计算得到的分数为Si, 1

2020-10-06 17:09:02 96 1

原创 【深度学习】:详解Batch Normalization批标准化

论文地址:https://arxiv.org/pdf/1502.03167.pdfBatch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性。虽然有些细节处理还解释不清其理论原因,但是实践证明好用才是真的好,别忘了DL从Hinton对深层网络做Pre-Train开始就是一个经验领先于理论分析的偏经验的一门学问。本文是对论文《Batch Normalization: Accelerating Deep Network Training by Reducing In.

2020-09-29 18:55:26 36

原创 深度学习:GoogLeNet结构详解

1. GoogLeNet网络详解GoogLeNet在2014年由Google团队提出(与VGG网络同年,注意GoogLeNet中的L大写是为了致敬LeNet),斩获当年ImageNet竞赛中Classification Task (分类任务) 第一名。 原论文地址:Going deeper with convolutions GoogLeNet 的创新点: 引入了Inception结构(融合不同尺度的特征信息) 使用1x1的卷积核进行降维以及映射处理 (虽然VGG网络中也有,..

2020-09-27 21:21:02 89

原创 Google Colab训练数据集教程

一般情况下,先将我们本地的项目上传到github,然后在colab里面git clone我们的项目:比如:!git clone https://github.com/WZMIAOMIAO/deep-learning-for-image-processing.git然后cd到我们的目录文件夹下面。对于数据集的下载,可以使用wget,然后使用tar解压,!wget http://download.tensorflow.org/example_images/flower_photos.

2020-09-26 10:35:26 100

原创 深度学习:详解VGGNet论文

一、简介 VGG Net由牛津大学的视觉几何组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发的的深度卷积神经网络,在ILSVRC 2014上取得了第二名的成绩,将 Top-5错误率降到7.3%。它主要的贡献是展示出网络的深度(depth)是算法优良性能的关键部分。目前使用比较多的网络结构主要有ResNet(152-1000层),GooleNet(22层),VGGNet(19层),大多数模型都是基于这几个模型上改进,采用新的优化算法,多...

2020-09-25 10:38:53 57

原创 深度学习:使用pytorch训练cifar10数据集(基于Lenet网络)

文档基于b站视频:https://www.bilibili.com/video/BV187411T7Ye流程model.py ——定义LeNet网络模型 train.py ——加载数据集并训练,训练集计算loss,测试集计算accuracy,保存训练好的网络参数 predict.py——得到训练好的网络参数后,用自己找的图像进行分类测试文件目录结构截图:1. model.py先给出代码,模型是基于LeNet做简单修改,层数很浅,容易理解:# 使用torch.nn包来构建神经网

2020-09-23 20:40:25 176 2

原创 深度学习:开山之作AlexNet论文详解

AlexNet是一个卷积神经网络,由亚历克斯·克里泽夫斯基(Alex Krizhevsky)设计,与伊尔亚‧苏茨克维(Ilya Sutskever)和克里泽夫斯基的博士导师杰弗里·辛顿共同发表,而辛顿最初抵制他的学生的想法。AlexNet参加了2012年9月30日举行的ImageNet大规模视觉识别挑战赛,达到最低的15.3%的Top-5错误率,比第二名低10.8个百分点。原论文的主要结论是,模型的深度对于提高性能至关重要,AlexNet的计算成本很高,但因在训练过程中使用了图形处理器(GPU)而使得计

2020-09-22 19:36:27 135

原创 深度学习:详解卷积神经网络(LeNet)

经典卷积神经网络的结构一般满足如下表达式:输出层 -> (卷积层+ -> 池化层?)+ -> 全连接层+上述公式中,“+”表示一个或者多个,“?”表示一个或者零个,如“卷积层+”表示一个或者多个卷积层,“池化层?”表示一个或者零个池化层。“->”表示 forward 方向。经典的卷积神经网络结构:卷积层尝试解决这两个问题。一方面,卷积层保留输入形状,使图像的像素在高和宽两个方向上的相关性均可能被有效识别;另一方面,卷积层通过滑动窗口将同一卷积核与不同位置的输入重.

2020-09-21 18:31:24 43

原创 深度学习:卷积神经网络中的卷积核

卷积核就是图像处理时,给定输入图像,输入图像中一个小区域中像素加权平均后成为输出图像中的每个对应像素,其中权值由一个函数定义,这个函数称为卷积核。又称滤波器。同样提取某个特征,经过不同卷积核卷积后效果也不一样(这是个重点,为什么说重点,因为CNN里面卷积核的大小就是有讲究的)。比如说:可以发现同样是锐化,下图5x5的卷积核要比上图3x3的卷积核效果细腻不少。说了这么多,我只想说明,(1)原始图像通过与卷积核的数学运算,可以提取出图像的某些指定特征(features)。(2)不

2020-09-20 11:12:46 301

原创 深度学习:权重衰减(weight decay)与学习率衰减(learning rate decay)

正则化方法:防止过拟合,提高泛化能力避免过拟合的方法有很多:early stopping、数据集扩增(Data augmentation)、正则化(Regularization)包括L1、L2(L2 regularization也叫weight decay),dropout。权重衰减(weight decay)L2正则化的目的就是为了让权重衰减到更小的值,在一定程度上减少模型过拟合的问题,所以权重衰减也叫L2正则化。在损失函数中,weight decay是放在正则项(regularizati

2020-09-18 18:57:15 378

原创 深度学习:Dropout解决过拟合问题

在学习深度学习时,常常有人会问到这样一个问题:Dropout技术为什么能防止过拟合?当然,简单的回答是:防止参数过分依赖训练数据,增加参数对数据集的泛化能力。是什么?假设我们要训练这样一个神经网络输入是x输出是y,正常的流程是:我们首先把x通过网络前向传播然后后把误差反向传播以决定 如何更新参数让网络进行学习。使用dropout之后过程变成:1. 首先随机(临时)删掉网络中一半的隐藏神经元,输入输出神经元保持不变(下图中虚线为部分临时被删除的神经元)2. 然后把输入.

2020-09-16 20:29:05 197

原创 机器学习:分类模型评估指标(准确率、精准率、召回率、F1、ROC曲线、AUC曲线)

机器学习模型需要有量化的评估指标来评估哪些模型的效果更好。本文将用通俗易懂的方式讲解分类问题的混淆矩阵和各种评估指标的计算公式。将要给大家介绍的评估指标有:准确率、精准率、召回率、F1、ROC曲线、AUC曲线。机器学习评估指标大全所有事情都需要评估好坏,尤其是量化的评估指标。高考成绩用来评估学生的学习能力 杠铃的重量用来评估肌肉的力量 跑分用来评估手机的综合性能机器学习有很多评估的指标。有了这些指标我们就横向的比较哪些模型的表现更好。我们先从整体上来看看主流的评估指标都有哪些:

2020-09-16 17:24:50 449

C语言知识点完整总结(超清版)

1)程序结构是三种: 顺序结构 、选择结构(分支结构)、循环结构。 2)读程序都要从main()入口, 然后从最上面顺序往下读(碰到循环做循环,碰到选择做选择),有且只有一个main函数。 3)计算机的数据在电脑中保存是以 二进制的形式. 数据存放的位置就是 他的地址. 4)bit是位 是指为0 或者1。 byte 是指字节, 一个字节 = 八个位.

2018-12-12

数据结构1800题(含详解答案)

最新版数据结构1800题 含完整答案详解 自学或者考研可以参考一下,期末考试也可以参考

2018-11-17

数据结构复习总结

适用于期末考试、考研复习、个人自学的知识点权威总结,包含全部数据结构的内容。

2018-11-13

ACM算法竞赛常用代码

时间复杂度(渐近时间复杂度的严格定义,NP问题,时间复杂度的分析方法,主定理)   排序算法(平方排序算法的应用,Shell排序,快速排序,归并排序,时间复杂度下界,三种线性时间排  序,外部排序)   数论(整除,集合论,关系,素数,进位制,辗转相除,扩展的辗转相除,同余运算,解线性同余方程,中国剩余定理) 指针(链表,搜索判重,邻接表,开散列,二叉树的表示,多叉树的表示) 按位运算(and,or,xor,shl,shr,一些应用) 图论(图论模型的建立,平面图,欧拉公式与五色定理,求强连通分量,求割点和桥,欧拉回路,AOV问题,AOE问题,最小生成树的三种算法,最短路的三种算法,标号法,差分约束系统,验证二分图,Konig定理,匈牙利算法,KM算法,稳定婚姻系统,最大流算法,最小割最大流定理,最小费用最大流算法) 计算几何(平面解几及其应用,向量,点积及其应用,叉积及其应用,半平面相交,求点集的凸包,最近点对问题,凸多边形的交,离散化与扫描) 数据结构(广度优先搜索,验证括号匹配,表达式计算,递归的编译,Hash表,分段Hash,并查集,Tarjan算法,二叉堆,左偏树,二斜堆,二项堆,二叉查找树,红黑树,AVL平衡树,Treap,Splay,静态二叉查找树,2-d树,线段树,二维线段树,矩形树,Trie树,块状链表) 组合数学(排列与组合,鸽笼原理,容斥原理,递推,Fibonacci数列,Catalan数列,Stirling数,差分序列,生成函数,置换,Polya原理) 概率论(简单概率,条件概率,Bayes定理,期望值) 矩阵(矩阵的概念和运算,二分求解线性递推方程,多米诺骨牌棋盘覆盖方案数,高斯消元) 字符串处理(KMP,后缀树,有限状态自动机,Huffman编码,简单密码学) 动态规划(单调队列,凸完全单调性,树型动规,多叉转二叉,状态压缩类动规,四边形不等式) 博奕论(Nim取子游戏,博弈树,Shannon开关游戏) 搜索(A*,ID,IDA*,随机调整,遗传算法)

2018-11-13

spring、springmvc和mybatis完整整合包

基于spring4.0+版本,包括spring4.2.0 ,mybatis3.4.1,spring-webmvc-4.2.0,log4j,commons-logging-1.2,commons-logging-1.2等全部的jar包

2018-05-03

《鸟哥的Linux私房菜-基础篇》第四版(彩色超清版)pdf.zip

全书分为5个部分:第一部分着重说明Linux的起源及功能,如何规划和安装Linux主机;第二部分介绍Linux的文件系统、文件、目录与磁盘的管理;第三部分介绍文字模式接口shell和管理系统的好帮手shell脚本,另外还介绍了文字编辑器vi和vim的使用方法;第四部分介绍了对于系统安全非常重要的Linux账号的管理,以及主机系统与程序的管理,如查看进程、任务分配和作业管理;第五部分介绍了系统管理员(root)的管理事项,如了解系统运行状况、系统服务,针对登录文件进行解析,对系统进行备份以及核心的管理等。 鸟哥,台湾成功大学环境工程系博士,就学期间由于研究需要接触到Linux操作系统,又因实验室交接需求而建立“鸟哥的Linux私房菜”网站。因个人喜好“絮叨”,网站文章风格就此成形。曾任台湾多家知名Linux教育中心讲师,目前于昆山科技大学资讯传播系教授Linux相关课程。专长是Linux操作系统、网站规划与维护、网络安全,兴趣是写作与阅读,研究方向是网络应用整合。

2018-04-21

Python网络数据采集.(超清带书签)pdf

本书采用简洁强大的Python语言,介绍了网络数据采集,并为采集新式网络中的各种数据类型提供了全面的指导。第一部分重点介绍网络数据采集的基本原理:如何用Python从网络服务器请求信息,如何对服务器的响应进行基本处理,以及如何以自动化手段与网站进行交互。第二部分介绍如何用网络爬虫测试网站,自动化处理,以及如何通过更多的方式接入网络。

2018-04-20

Linux命令行与shell脚本编程大全(带书签超清版).第3版pdf

Linux命令行与shell脚本编程大全(第3版)是关于Linux命令行和shell命令的全面参考资料,涵盖详尽的动手教程和实际应用指南,并提供相关参考信息和背景资料,带你从Linux命令行基础入手,直到写出自己的shell。 《Linux命令行与shell脚本编程大全(第3版)》是一本关于Linux命令行与shell脚本编程的全方位教程,主要包括四大部分:Linux命令行,shell脚本编程基础,高级shell脚本编程,如何创建实用的shell脚本。 《Linux命令行与shell脚本编程大全(第3版)》针对Linux系统的新特性进行了全面更新,不仅涵盖了详尽的动手教程和现实世界中的实用信息,还提供了与所学内容相关的参考信息和背景资料。 通过《Linux命令行与shell脚本编程大全(第3版)》的学习,你将轻松写出自己的shell脚本。

2018-04-10

Python基础教程(第3版)超清中文版

本书是经典教程的全新改版,作者根据Python 3.0版本的种种变化,全面改写了书中内容,做到既能“瞻前”也能“顾后”。本书层次鲜明、结构严谨、内容翔实,特别是在最后几章,作者将前面讲述的内容应用到了10个引人入胜的项目中,并以模板的形式介绍了项目的开发过程。本书既适合初学者夯实基础,又能帮助Python程序员提升技能,即使是 Python方面的技术专家,也能从书里找到令你耳目一新的东西。

2018-04-08

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除