Python快速入门系列-8(Python数据分析与可视化)

本文介绍了Python在数据分析和可视化中的应用,涵盖数据处理、清洗、转换与整理,以及使用Matplotlib、Seaborn和Plotly进行数据可视化。此外,还简述了数据挖掘与机器学习,涉及Scikit-learn和TensorFlow的基础用法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


开篇图

在本章中,我们将探讨如何使用Python进行数据分析和可视化。数据分析是从数据中提取有用信息和洞察力的过程,而数据可视化则是将这些信息以图形的形式呈现出来,使得人们更容易理解和分析数据。Python在数据分析和可视化领域有着广泛的应用,其强大的库和工具使得处理大规模数据变得更加高效和简单。

8.1 数据处理与清洗

在进行数据分析之前,首先需要对数据进行处理和清洗。数据处理包括数据的加载、清洗、转换和整理,以便后续分析。在Python中,有许多库可以帮助我们进行数据处理,其中最常用的是pandas库。

8.1.1 数据加载与查看

首先,我们需要加载数据集并查看数据的基本信息。pandas库提供了read_csv()函数用于加载CSV格式的数据文件,并且可以使用head()函数查看数据的前几行。

import pandas as pd

# 加载数据集
data = pd.read_csv('data7.csv')

# 查看数据的前5行
print(data.head())

其中data7.csv文件内容如下:
在这里插入图片描述
代码运行后效果如下:
在这里插入图片描述

8.1.2 数据清洗与处理

数据清洗是数据分析的重要步骤,它包括处理缺失值、异常值和重复值等。pandas库提供了一系列函数来帮助我们进行数据清洗,例如dropna()函数用于删除缺失值,fillna()函数用于填充缺失值,drop_duplicates()函数用于删除重复值等。

# 处理缺失值
data.dropna(inplace=True)

# 处理重复值
data.drop_duplicates(inplace=True)

8.1.3 数据转换与整理

在数据分析过程中,有时需要对数据进行转换和整理,以便后续分析。pandas库提供了丰富的函数和方法来进行数据转换和整理,例如groupby()函数用于分组聚合,merge()函数用于合并数据集,pivot_table()函数用于数据透视等。

# 数据分组聚合
grouped_data = data.groupby('category').sum()

# 数据合并
merged_data = pd.merge(data1, data2, on='key')

# 数据透视
pivot_table = data.pivot_table(index='category', columns='date', values='value', aggfunc='sum')

8.2 数据可视化工具介绍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

专家-赤兔[在线]

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值