杨辉三角
上图就是常见的杨辉三角,杨辉三角就一个最大的特点就是(除第一行)每一个数值都等于他的肩上的两数之和,也就是说杨辉三角是唯一确定的特殊数列。
在C语言中,我们可以把杨辉三角看成是一个特殊的二维数组,这个数组的第0列全是1,第i行i列也是1,(i为自然数)。其余数值均等于数字所在位置前一行该列的值与前一行前一列的值之和。
在屏幕上打印杨辉三角的前十行
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<windows.h>
#define size 10
int main()
{
int i = 0;//行标
int j = 0;//列标
int a[10][10];
//计算杨辉三角
for (i = 0; i<size; i++)
{
a[i][0] = 1;
a[i][i] = 1;
for (j = 1; j<i; j++)
a[i][j] = a[i - 1][j - 1] + a[i - 1][j];
}
//打印输出
for (i = 0; i<size; i++)
{
for (j = 0; j<size - i - 1; j++){
printf(" ");
}
for (j = 0; j <= i; j++){
printf("%5d ", a[i][j]);
}
putchar('\n');/*printf("\n");*/
}
system("pause");
return EXIT_SUCCESS;
}
输出水仙花数
求出0~999之间的所有“水仙花数”并输出。“水仙花数”是指一个三位数,其各位数字的立方和确好等于该数本身,如;153=1+5+3?,则153是一个“水仙花数”。
在数论中,水仙花数(Narcissistic number)也称为自恋数、自幂数、阿姆斯壮数或阿姆斯特朗数(Armstrong number),是指一N位数,其各个数之N次方和等于该数。
例如
153、370、371及407就是三位数的水仙花数,其各个数之立方和等于该数:
153 = 1^3 + 5^3 + 3^3。
370 = 3^3 + 7^3 + 0^3。
371 = 3^3 + 7^3 + 1^3。
407 = 4^3 + 0^3 + 7^3。
显然左值无需大动干戈,右值的话主要要得到各个位的数值和总共的位数。
1、求一个数总共的位数:
如果是个位数,那么位数就是1。
我们知道一个数除10,它的位数会减少1。那么,如果不是个位数,我们可以给位数+1,然后除10,如此循环,直至只剩下个位。
2、取一个数n的的个位的话:可以采取n%10。
而我们需要知道的不仅有个位的数值,我们可以对n/10,就把十位移到了个位,就可以取了。如此,每个位都可以取得。
最后进行比较即可。
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
int main()
{
for (int i = 0; i<1000; i++)
{
//计算第i个数是几位的
int tmp = i;
int count = 1;//count表示i的位数
while (tmp>9)
{
count++;
tmp = tmp / 10;
}
//计算第i个数的各个位的count次方的和sum
tmp = i;
int sum = 0;
while (tmp)
{
sum = sum + pow((float)(tmp % 10), count);
//因为库里,没有pow(int,int),这里进行了类型强制转化
//tmp%10,取得最低位的数值
tmp = tmp / 10;//去掉最低位
}
if (sum == i)
printf("%d ", i);
}
printf("\n");
system("pause");
return 0;
}
程序运行结果:
求Sn=a+aa+aaa
求Sn=a+aa+aaa+aaaa+aaaaa...
的前n项之和,其中a是一个数字的代表。例如a=2,n=5
时候,求的就是2+22+222+2222+22222
#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
int main()
{
int a, n, i = 0, sum = 0, tmp = 0;
scanf("%d %d", &a, &n);
for (i = 0; i<n; i++)
{
tmp = tmp * 10 + a;
printf("第%d个数是:%d \n", i + 1, tmp);
sum = sum + tmp;
}
printf("\n前%d个数的这种加法和sum=%d\n", n, sum);
system("pause");
return 0;
}