深度学习环境配置必看!(CUDA11.2、cudnn8.1.1、pytorch 1.8.0 Python3.9、Anaconda)

本文分享了深度学习环境配置的经验,包括CUDA、cuDNN、PyTorch和Python的版本匹配问题,以及安装过程中可能遇到的错误和解决办法。强调了版本一致性的重要性,并提供了错误解决方案,如conda安装失败、文件缺失、Python版本选择等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

个人配置规格:python3.9 + CUDA 11.2 + Cudnn8.1.1 + pytorch1.8.0 + Anaconda4.14.0

自己捯饬该配置用了一天左右的时间,现在分享一下自己安装的时候使用的资料和踩过的坑,避免大家重复我的错误【唉一声哀叹】

安装前

(6条消息) 深度学习环境配置超详细教程【Anaconda+PyTorch(GPU版)+CUDA+cuDNN】_傲寒。的博客-CSDN博客_深度学习环境配置

这些环境配置对于版本一致性的要求很高,所以在下载这些组件前,最好查看CUDA、cuDNN、pytorch和python对应关系,不然后期就可能会出现:

  1. CUDA和cudnn的版本不一致,本子无法检测出CUDA或cudnn;
  2. CUDA和cudnn是一致了,但下载pytorch的时候发现官网Previous PyTorch Versions | PyTorch没有匹配的CUDA和cudnn,这样就会很麻烦ÿ
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值