aspect 分类及形容词的情感分类——An unsupervised aspect-sentiment model for online reviews

本文提出了一种无监督方法,利用局部LDA模型进行aspect分类,结合句法分析和图构建确定形容词极性,无需依赖词典信息。通过对评论数据的处理,生成aspect相关形容词的positive和negative种子集,有效解决了在线评论的情感分析问题。
摘要由CSDN通过智能技术生成

本文使用无监督方法解决aspect分类问题、生成 aspect相关形容词并判断形容词的极性。

总结:本文使用无监督学习并考虑了aspect和sentiment之间的交互,解决aspect检测并自动生成和每个aspect高度相关的包含positive形容词和negative形容词的种子集。aspect检测是通过在句子级别应用的local LDA模型,生成aspects上的一个分布,并且对每个aspect定义一个阈值,如果概率超过该aspect那么认为句子包含了该aspect。然后根据否定前缀和否定词信息以及conjunction信息,为每个aspect得到两组形容词,把出现频率最高的那一组定义为positive,另一组为negative。本文的优秀之处在于没有使用任何词典信息,而是完全数据驱动的,有训练数据得到所有的东西。但本文的缺点是使用形容词作为情感指示器,其他词性的单词对情感判断也是有帮助的。

1、aspect

通过把句子看作文档,应用local LDA模型。假设aspect数目(即topic数目)在10~20之间,通过聚类验证方法(cluster validation scheme)确定最优值。聚类验证法是指对不同model order(聚类数)进行比较,一致性最高的那个数目为最优数目(the one with the most consistent clustering is chosen)。这里为每个aspect关联一个cluster,并把每句话标记为属于最可能aspect对应的cluster。

定义一致性函数:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值