Python第三方库——Matplotlib_绘制数据的均值和方差图

现在有一组数据,我们想绘制同时包含数据均值和标准偏差的图——ErrorBar。

import random
#在区间[5,15]中生成15个数据
x = np.random.randint(5, 15, 15)
mean = np.mean(x)
std_deviation = np.std(x)
plt.errorbar(1, mean, yerr=std_deviation, fmt="o")
plt.show()

这里写图片描述

如果是一组数据的演化过程:

import random
#在区间[5,15]中生成15个数据
x1 = np.random.randint(5, 15, 15)
x2 = np.random.randint(5, 10, 15)
x3 = np.random.randint(0, 5, 15)
mean1 = np.mean(x1)
mean2 = np.mean(x2)
mean3 = np.mean(x3)
std_deviation1 = np.std(x1)
std_deviation2 = np.std(x2)
std_deviation3 = np.std(x3)
plt.errorbar([1,2,3], [mean1, mean2, mean3], yerr=[std_deviation1, std_deviation1, std_deviation1], fmt="o")
plt.show()

这里写图片描述

上面绘制的是均值和标准偏差(standard deviation)图,也可以绘制均值和标准差(standard error)图。标准差和标准偏差的关系为:

error=deviationsqrt(N)

其中N为数据的数量。

### 回答1: 你可以使用matplotlib库来绘制均值方差。你可以使用matplotlib.pyplot.bar()函数绘制水平条形matplotlib.pyplot.barh()函数绘制垂直条形matplotlib.pyplot.boxplot()函数绘制箱线,以及matplotlib.pyplot.scatter()函数绘制散点。 ### 回答2: Python可以使用Matplotlib库来绘制均值方差。以下是一个简单的示例: 首先,我们需要引入Matplotlib库和Numpy库: import matplotlib.pyplot as plt import numpy as np 接下来,我们可以生成一些随机数作为示例数据: data = np.random.normal(size=100) 然后,我们可以计算数据均值方差: mean = np.mean(data) variance = np.var(data) 接下来,我们可以创建一个空的形和子: fig, ax = plt.subplots() 然后,我们可以绘制数据的直方: ax.hist(data, bins=20, alpha=0.5) 接着,我们可以在形上绘制均值方差的线: ax.axvline(x=mean, color='r', linestyle='--', linewidth=2, label='Mean') ax.axvline(x=mean+np.sqrt(variance), color='b', linestyle='--', linewidth=2, label='Mean + Std') ax.axvline(x=mean-np.sqrt(variance), color='b', linestyle='--', linewidth=2, label='Mean - Std') 最后,我们可以添加例和标题,并显示形: ax.legend() plt.title('Mean and Variance Plot') plt.show() 这样,我们就可以使用PythonMatplotlib绘制均值方差了。 ### 回答3: Pythonmatplotlib库可以绘制均值方差。以下是一个简单的例子: ```python import matplotlib.pyplot as plt import numpy as np # 生成一组随机数据 data = np.random.normal(loc=0, scale=1, size=1000) # 计算均值方差 mean = np.mean(data) variance = np.var(data) # 绘制数据的直方 plt.hist(data, bins=30, color='blue', alpha=0.5) # 绘制均值的竖线 plt.axvline(x=mean, color='red', linestyle='dashed', linewidth=2, label='Mean') # 绘制方差的区间 plt.axvspan(mean-variance, mean+variance, facecolor='gray', alpha=0.2, label='Variance') # 添加例和标题 plt.legend() plt.title('Mean-Variance Plot') # 显示形 plt.show() ``` 这个例子首先生成了1000个随机数据,并计算了其均值方差。然后使用`plt.hist()`绘制数据的直方,使用`plt.axvline()`绘制均值的竖线,使用`plt.axvspan()`绘制方差的区间。最后添加了例和标题,并通过`plt.show()`显示形。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值