动态规划解决斐波那契数列问题

本文探讨了如何使用动态规划方法解决斐波那契数列问题,以提高效率并降低空间复杂度。通过迭代变换的g和f两个变量,实现了时间复杂度O(n)和空间复杂度O(1)的解决方案。
摘要由CSDN通过智能技术生成

显然使用的递归方法解决斐波那契数列问题效率并不高,运用递归方法时间复杂度和空间复杂度是很大的。

接下来我会把我学习到的一种效率较高并且其空间复杂度较小的方法介绍一波:

动态规划:由底向顶逐步迭代求得斐波那契数列的第n项

传统的解决方法是运用公式:F(n-1)+ F(n+1);而这种方法是运用g,f 两个变量分别的的迭代变换,即:

g = g + f ;
f = g - f ;

例:g = 1; f = 0;
1.
g = 1 + 0 = 1;
f = 1 - 0 = 1;

2.
g = 1 + 1 = 2;
f = 2 - 1 = 1;
3.
g = 2 + 1 = 3;
f = 3 - 1 = 2;
依次迭代计算,最后的g就是我们所要求的斐波那契数列第n项


#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值