砝码称重:动态规划的bool类型

该篇文章介绍了如何通过动态规划解决一个关于物品称重的问题,利用状态转移方程f[i][j]表示第i个物品能否称出第j个重量,通过遍历所有可能的情况得出最终可以称重的组合数量。
摘要由CSDN通过智能技术生成

本题链接:竞赛中心 - 蓝桥云课 (lanqiao.cn)

思路:

 f[i][j]  : 对第i个物品,是否可以称出第j个重量 

因此最后的结果直接对最后一个砝码遍历,数有几个true

  每个砝码都有选、不选两种情况,而选之后又有放左边和右边的选择,即+ 或者 -

因此状态转移方程为: f[i][j] = f[i - 1][j] || f[i - 1][abs(j - nums[i])] || f[i - 1][j + nums[i]]  

注意一定要初始化!f[0][0] = true

代码:

#include <iostream>
#include<algorithm>
using namespace std;

int n;
const int N = 110;
int nums[N];
bool f[N][200010];
int m = 0;

int main()
{
  cin >> n;

  for(int i = 1;i <= n;i++) {
    cin >> nums[i];
    m += nums[i];
  }

  f[0][0] = true;

  for(int i = 1;i <= n;i++){
    for(int j = 0;j <= m;j++){
      f[i][j] = f[i - 1][j] || f[i - 1][abs(j - nums[i])] || f[i - 1][j + nums[i]];
    }
  }
  int res = 0;
  for(int i = -m;i <= m;i++){
    if(f[n][i]) res ++;
  }
  cout << res - 1;
  return 0;
}

以上是本文全部内容,如果对你有帮助点个赞再走吧~  ₍˄·͈༝·͈˄*₎◞ ̑̑

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值