包含整数的二维矩阵 M 表示一个图片的灰度。你需要设计一个平滑器来让每一个单元的灰度成为平均灰度 (向下舍入) ,平均灰度的计算是周围的8个单元和它本身的值求平均,如果周围的单元格不足八个,则尽可能多的利用它们。
示例 1:
输入:
[[1,1,1],
[1,0,1],
[1,1,1]]
输出:
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]
解释:
对于点 (0,0), (0,2), (2,0), (2,2): 平均(3/4) = 平均(0.75) = 0
对于点 (0,1), (1,0), (1,2), (2,1): 平均(5/6) = 平均(0.83333333) = 0
对于点 (1,1): 平均(8/9) = 平均(0.88888889) = 0
注意:
给定矩阵中的整数范围为 [0, 255]。
矩阵的长和宽的范围均为 [1, 150]。
解:
遍历,计算周围的8个单元跟自己本身值的平均即可
代码:
class Solution {
int r = 0;
int c = 0;
public int[][] imageSmoother(int[][] M) {
r = M.length;
c = M[0].length;
int[][] res = new int[r][c];
for (int i = 0; i < r; i++)
{
for (int j = 0; j < c; j++)
{
res[i][j] = cal(M, i, j);
}
}
return res;
}
//两个数组对应下标元素为周围的8个单元
int R[] = {-1,1,0,0,-1,-1,1,1};
int C[] = {0,0,-1,1,-1,1,-1,1};
private int cal(int[][] arr, int i, int j)
{
int count = 1;
int sum = arr[i][j];
for (int k = 0; k < R.length; k++)
{
int nextR = i + R[k];
int nextC = j + C[k];
if (nextR >= 0 && nextR < r && nextC >= 0 && nextC < c)
{
count++;
sum += arr[nextR][nextC];
}
}
return sum/count;
}
}