奇数性
下面方法的目的是确定其惟一的参数是否为奇数。这个方法是否可行?
public static boolean isOdd(int i) {
return i % 2 == 1;
}
答案:
不行!该方法对所有负奇数的判断都会失败,返回false。
当取余操作返回一个非零的结果时,它与左操作数具有相同的正负符号。
改正:只需将 i % 2 与 0 而不是与 1 比较,使用相反的比较含义即可,书中给出的方法是:
public static boolean isOdd(int i) {
return i % 2 != 0;
}
书中还给出了一个性能更好的方法(用位操作符&替代取余操作符):
public static boolean isOdd(int i) {
return (i & 1) != 0;
}
这道题给我最大的收获就是这里,
怎么理解这里的 (i & 1) != 0;
与运算(&)的特殊用途:
1、清零
例如:5 & 0 即 0000 0101 & 0000 0000 = 0000 0000
2、取一个数中指定位(也可以说是保留一个数的某些位)
例如:保留一个数(二进制数)中的第1位,这里以5为例
0000 0101 & 0000 0001 = 0000 0001
奇数的数学表达形式为:2k+1(k∈Z)
化为二进制数来理解即二进制数中第一位为1的即奇数,换句话说第一位不为0的即为奇数。
这里的 (i & 1) != 0即保留 i 这个数的第1位,若不等于0,即为奇数。