时序精选论文09|SOFTS: 基于新型MLP通道融合架构的时间序列预测模型(代码解读附源码)

Machine Learning

SOFTS: Efficient Multivariate Time Series Forecasting with Series-Core Fusion

SOFTS 要解决的问题

通道独立策略将多元时间序列分解为多个单一时间序列,并应用统一的单变量预测模型进行处理。这种方法因其对非平稳数据的强大鲁棒性而受到广泛青睐,但它未能考虑通道间的相互关联,限制了其性能的进一步优化。

相比之下,通道依赖策略通过引入专门的通道信息融合机制来促进通道间的信息交流。然而,这类方法面临两难:一方面,它们可能过度依赖通道间的相关性,从而在面对序列非平稳性时缺乏足够的鲁棒性;另一方面,它们可能采用如注意力机制等复杂的关系建模技术,导致计算复杂度增加,难以在大规模应用中扩展。

因此,如何利用通道独立的鲁棒性,并且设计更鲁棒和高效的通道交互模块,是学术界优化多元时序预测方法所必须

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值