851-递归与分治

递归与分治
递归的概念:直接或间接调用自身的算法称为递归算法;用函数自身定义的函数称为递归函数。
分治的概念:将一个规模为n的问题分解为若干个规模为子k的问题;每个子问题相互独立且与原问题相同;将各个子问题的解合并得到原问题解。
例题:
1.排列问题

问题描述:设R={r1,r2,…rn}是要进行排列的n个元素,Ri=R-{ri}。集合X中元素的全排列记为Perm(X)。(ri)Perm(X)表示在全排列Perm(X)的每个排列上加上前缀ri得到的排列。R的全排列可归纳定义如下:
当n=1时,Perm®=®,其中r是集合R中唯一元素。
当n>1是时,Perm®由(r1)Perm(R1),(r2)Perm(R2)…(rn)Perm(Rn)构成。

算法思想:
边界条件:确定最后一个元素时可确定此时排列顺序
递归:确定第一个元素后,逐个划分然后递归调用依次确定第二第三直到最后一个元素。


void Perm(int list[],int p,int r){      //产生list[p:r]的所有全排列
    if(p=r)                             //只剩下一个元素时,输出排列序列
    {
        for(i=0;i<r;i++){
            printf("%d",list[i]);
        }
    }
    
    else{
        for(int i=p;i<r;i++){           //还有多个元素待排列,递归产生排列
            swap(list[p],list[i]);      //逐个划分,确定第一个元素
            perm(list,p+1;r);           //对还未确定的list[p+1:r]进行全排列
            swap(list[p],list[i]);      //逐个划分确定第一个元素
        }
    }
}
void swap(int a,int b){             //交换
    int temp=a;
    a=b;
    b=temp;
}

2.hanoi塔问题

算法思想:当只有一个圆盘可直接将其移动到b上,n>1时需要塔座c作为辅助塔座。此时要将余下n-1个圆盘按照规则从塔座a移动到c上,让后将剩下的最大的圆盘移动到b上,最后再设法将余下n-1个圆盘从塔座c移动到b上。由此可见n个圆盘移动问题就可以分解成二次n-1的问题

边界条件:只剩最后一个圆盘时,直接将其时移动到塔座b上
递归:依次将还未移动的最大圆盘移动到塔座b上,对余下未移动到b上的圆盘进行递归,直到圆盘全部移动到塔座b上

void hanoi(int n,int a,int b,int c){    //将n个与圆盘以c未中介,从a移动到b
    if(n==1)            //当只有一个圆盘时,直接将圆盘从a移动到b
        move(n,a,b);
    else{
        hanoi(n-1,a,c,b);       //将n-1个元素,以b为中介从a移动到c
        move(n,a,b);            //将第n个元素从a移动到b
        hanoi(n-1,c,b,a);       //将剩余n-1个元素以a为中介从c移动到b
    }
}

3.线性时间选择/规划

找出n个元素中第k小的元素

int RandomSlect(int a[],int p,int r,int k){
    if(p==r){				//当递归到只剩下一个元素时,这个元素即为第k小元素
        return a[p];
    }
    int i=partition(a,q,r);		//根据枢轴元素,将a[]随机划分为小于枢轴元素和大于枢轴元素二部分
    j=i-p+1;					//枢轴元素为第j小元素
    if(k==j)
        return a[i];
    else if(k<j)		
        return RadomSelet(a,p,i-1,k);		//当要k<j时,左半找第k小元素
    else
        return RandomSelet(a,i+1,r,k-j);	//k>j时,原问题可转化为在右半部分找第k-j小元素
}


int partition(int a[],int low,int high){
    int pivot=a[low];		//选取当前表中第一个元素为枢轴元素,对表进行划分
    while(low<high){		//跳出循环条件
        while(low<high&&a[high]>pivot){
            high--;
        }
        a[low]=a[high];		//将比枢轴元素小的移动到左端
        while(low<high&&a[low]<pivot){
            low++;			
        }
        a[high]=a[low];		//将比枢轴元素大的移动到右端
    }
    a[low]=pivot;			//直到到low=high时,此时枢轴元素为最终存放位置low/high
    return low;				//返回存放位置
}

在这里插入图片描述

4.整数划分

问题描述:将正整数n表示成一系列正整数之和。
如p(6)=11 6有11种划分方式。
6
5+1
4+2,4+1+1
3+3,3+2+1,3+1+1
2+2+2,2+2+1+1,2+1+1+1+1
1+1+1+1+1+1

算法思想:可引入最大加数,在正整数n的所有划分中,将最大加数不超过m的划分个数记作q(n,m)可以建立如下关系式
n=1,m=1 q(n,m) =1 当n为1时或者最大加数为1时只能有一个排列顺序
n<m q(n,m) = q(n,n) 当n<m时最大加数可变为n
n=m q(n,m)=1+q(n,n-1) 当n=m时,排列个数为1+q(n,n-1)
n>m q(n,m)=q(n,m-1)+q(n-m,m) n<m时的划分
在这里插入图片描述

int q(int n,int m){    //对n进行划分,求排列个数
    if(n<1||m<1)
        return 0;
    else if(n=1||m=1)
        return 1;
    else if(n<m)
        return q(n,n);
    else if(n=m)
        return 1+q(n,m-1);
    else
        return q(n,m-1)+q(n-m.m);
}

5.大整数乘法

问题描述:
在这里插入图片描述算法思想:
在这里插入图片描述
在这里插入图片描述

6.棋盘覆盖

问题描述:
在这里插入图片描述
算法思想:
将一个2^k * 2^k的问题分割为4个k-1的问题,其余3个无特殊方格的子棋盘,将其转化为特殊棋盘,再用一个L型骨牌覆盖这3个较小棋盘的会合处。这三个子棋盘上被L型骨牌覆盖的方格就成为特殊方格,从而将原问题转化为4个较小的棋盘覆盖问题。递归的使用这种分割,直到棋盘简化为1*1棋盘

void ChessBoard(int tr,int tc,int dr,int dc,int size){  //tr,tc棋盘左上角行列号,dr,dc特殊方格的行列号;size 棋盘尺寸
    if(size==1){    //当简化为棋盘1*1时覆盖完毕
        return;
    }
    int t=L++;      //t为L型骨牌号
    int s=size/2;
    //覆盖左上角棋盘
    if(dr<tr+s&&dc<tc+s)            //特殊方格在此棋盘中
        ChessBoard(tr,tc,dr,dc,s);  //棋盘覆盖
    else{
        Board[tr+s-1][tc+s-1]=t;    //用t覆盖特殊方格
        ChessBoard(tr,tc,tr+s-1,tc+s-1,s);      //棋盘覆盖
    }
    //右上角
    if(dr<tr+s&&dc>=tc+s){
        ChessBoard(tr,tc,dr,dc,s);
    }
    else{
        Board[tr+s-1][tc+s]=t;
        ChessBoard(tr,tc,tr+s-1,tc+s-1,s);
    }
    //左下角
    if(dr>=tr+s&&dc<tr+s)
        ChessBoard(tr,tc,dr,dc,s);
    else{
        Board[tr+s-1][tc+s-1]=t;
        ChessBoard(tr,tc,tr+s-1,tc+s-1,s);
    }
    //右下角
    if(dr>=tr+s&&tc>=dc+s){
        ChessBoard(tr,tc,dr,dc,s);
    }
    else{
        Board[tr+s][tc+s]=t;
        ChessBoard(tr,tc,tr+s,tc+s,s);
    }
}

7. 最接近点对

问题描述:
在这里插入图片描述
算法思想:
在这里插入图片描述


bool Cpair(S,d){
    n=|s|;      //n作为点集s的个数
    if(n<2){
        d=INT_MAX;  
        return false;
    }
    m=midst(s);     //s作为各点坐标的中位数
    S1=lefts(s,left,m);    //s1为中位数左边的点集
    S2=rights(s,m,right);    //s2为中位数右边的点集
    Cpair(S1,d1);
    Cpair(S2,d2);
    p=max(S1);
    q=min(S2);
    d=min(d1,d2,q-p);
    return true;
}

在这里插入图片描述

8.Strassen矩阵乘法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

9.牛牛问题(补充)

问题描述:有一头母牛,假设每年年初生一头小牛,每头母牛从第四年开始,每年年初也生一头小牛,请编写程序实现第n年共有多少头母牛。

int GetNiuniu(int n){
    int a,b,c,d;
    int count=0;
    if(n<=4){
        count=n;
        printf("%d",count);
    }
    else{
        int i=n-4;
        a=b=c=d=1;
        for(i=0;i<n;i++){
            d=c+d;
            c=b;
            b=a;
            a=d;
        }
        count=a+b+c+d;
        printf("%d",count)
    }
    return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值