懒省事的小明
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
3
-
描述
-
小明很想吃果子,正好果园果子熟了。在果园里,小明已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。小明决定把所有的果子合成一堆。 因为小明比较懒,为了省力气,小明开始想点子了:
每一次合并,小明可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。小明在合并果子时总共消耗的体力等于每次合并所耗体力之和。
因为还要花大力气把这些果子搬回家,所以小明在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使小明耗费的体力最少,并输出这个最小的体力耗费值。
例如有3种果子,数目依次为1,2,9。可以先将1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为12。所以小明总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。-
输入
- 第一行输入整数N(0<N<=10)表示测试数据组数。接下来每组测试数据输入包括两行,第一行是一个整数n(1<=n<=12000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1<=ai<=20000)是第i种果子的数目。 输出
- 每组测试数据输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。 样例输入
-
1 3 1 2 9
样例输出
-
15
来源
- [hzyqazasdf]原创 上传者
STL 优先队列
思路就是最小优先, 先最小的第一个,第二个相加在入队,维护堆的性质从新变成小顶堆,继续前一个步骤知道队列的元素只有一个,由于这是多组数据的,前一组数据会影响下一组数据,所以这里需要先清空
#include<iostream> #include<cmath> #include<cstring> #include<cstdlib> #include<algorithm> #include<cmath> #include<ctime> #include<string> #include<stack> #include<deque> #include<queue> #include<list> #include<set> #include<map> #include<cstdio> #define mes(x) memset(x, 0, sizeof(x)) typedef long long ll; #define Pii pair<int, int> #define Pll pair<ll, ll #define INF 1e9+7 using namespace std; int main() { int n, m; ll w, sum, a, b; cin >> n; priority_queue<ll, vector<ll>, greater<int> >q; //最小优先队列 while(n--) { while(!q.empty()) { q.pop(); } sum = 0; cin >> m; for(int i = 0; i < m; ++i) { cin >> w; q.push(w); } if(1 == m) 为1的情况 sum = q.top(); else { while(q.size()!=1) //只需要最后一个数 { a = q.top(); q.pop(); if(!q.empty()) { b = q.top(); q.pop(); q.push(a+b); sum += a+b; } } } cout << sum << endl; } return 0; }