HDU1698 Just a Hook(线段树成段替换)

Just a Hook
Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 28728    Accepted Submission(s): 14242
Problem Description
In the game of DotA, Pudge’s meat hook is actually the most horrible thing for most of the heroes. The hook is made up of several consecutive metallic sticks which are of the same length.
Now Pudge wants to do some operations on the hook.

Let us number the consecutive metallic sticks of the hook from 1 to N. For each operation, Pudge can change the consecutive metallic sticks, numbered from X to Y, into cupreous sticks, silver sticks or golden sticks.
The total value of the hook is calculated as the sum of values of N metallic sticks. More precisely, the value for each kind of stick is calculated as follows:
For each cupreous stick, the value is 1.
For each silver stick, the value is 2.
For each golden stick, the value is 3.
Pudge wants to know the total value of the hook after performing the operations.
You may consider the original hook is made up of cupreous sticks.

Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 10 cases.
For each case, the first line contains an integer N, 1<=N<=100,000, which is the number of the sticks of Pudge’s meat hook and the second line contains an integer Q, 0<=Q<=100,000, which is the number of the operations.
Next Q lines, each line contains three integers X, Y, 1<=X<=Y<=N, Z, 1<=Z<=3, which defines an operation: change the sticks numbered from X to Y into the metal kind Z, where Z=1 represents the cupreous kind, Z=2 represents the silver kind and Z=3 represents the golden kind.

Output
For each case, print a number in a line representing the total value of the hook after the operations. Use the format in the example.

Sample Input
1
10
2
1 5 2
5 9 3

Sample Output
Case 1: The total value of the hook is 24.
这道涉及的就是线段树的成段替换还要区间求和。
成段替换就是加了一个Lazy_tag延迟标记。
然后由于是求整段的和,所以直接输出sum[1]就可以了。
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cctype>
#include<cmath>
#include<ctime>
#include<string>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#include<set>
#include<map>
#include<cstdio>
#include<limits.h>
#define fir first
#define sec second
#define fin freopen("/home/ostreambaba/文档/input.txt", "r", stdin)
#define fout freopen("/home/ostreambaba/文档/output.txt", "w", stdout)
#define mes(x, m) memset(x, m, sizeof(x))
#define pii pair<int, int>
#define Pll pair<ll, ll>
#define INF 1e9+7
#define Pi 4.0*atan(1.0)
#define MOD 1000000007

#define lowbit(x) (x&(-x))
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ls rt<<1
#define rs rt<<1|1

typedef long long ll;
typedef unsigned long long ull;
const double eps = 1e-12;
const int maxn = 100000+5;
using namespace std;

inline int read(){
    int x(0),f(1);
    char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int sum[maxn<<2];
int Lazy_tag[maxn<<2];
inline void PushUp(int rt)
{
    sum[rt] = sum[rt<<1] + sum[rt<<1|1];
}
inline void PushDown(int rt, int m)
{
    if(Lazy_tag[rt]){
        Lazy_tag[rt<<1] = Lazy_tag[rt<<1|1] = Lazy_tag[rt];
        sum[rt<<1] = (m-(m>>1))*Lazy_tag[rt];
        sum[rt<<1|1] = (m>>1)*Lazy_tag[rt];
        Lazy_tag[rt] = 0;
    }
}
inline void buildTree(int l, int r, int rt)
{
    Lazy_tag[rt] = 0;
    sum[rt] = 1;
    if(l == r){
        return;
    }
    int m = (l+r)>>1;
    buildTree(lson);
    buildTree(rson);
    PushUp(rt);
}
inline void query(int L, int R, int p, int l, int r, int rt)
{
    if(L <= l && r <= R){
        Lazy_tag[rt] = p;
        sum[rt] = (r-l+1)*p;
        return;
    }
    int m = (l+r)>>1;
    PushDown(rt, r-l+1);
    if(L <= m){
        query(L, R, p, lson);
    }
    if(R > m){
        query(L, R, p, rson);
    }
    PushUp(rt);
}
int main()
{
   // fin;
    int Case;
    Case = read();
    for(int k = 1; k <= Case; ++k){
        int N, Q, a, b, c;
        N = read();
        Q = read();
        buildTree(1, N, 1);
        for(int i = 1; i <= Q; ++i){
            a = read();
            b = read();
            c = read();
            query(a, b, c, 1, N, 1);
        }
        printf("Case %d: The total value of the hook is %d.\n", k, sum[1]);
    }
    return 0;
}



HDU(Hangzhou Dianzi University)OJ 中经常涉及到几何计算的问题,其中“判断两条线是否相交”是一个经典的算法问题。以下是关于如何判断两线是否相交的基本思路及其实现步骤: ### 判断两条线相交的核心思想 可以利用向量叉积以及端点位置的关系来确定两条线是否相交。 #### 具体步骤: 1. **定义基本概念** - 假设两条线分别为 `AB` 和 `CD`。 - 使用二维平面中的坐标表示各顶点:A(x₁,y₁), B(x₂,y₂),C(x₃,y₃) ,D(x₄,y₄)。 2. **叉积的作用** 叉积可以帮助我们了解两点相对于一条直线的位置关系。 对于三个点 P、Q、R ,我们可以用叉乘 `(Q-P)x(R-P)` 来检测 R 是否在 QP 直线的一侧还是另一侧。 如果结果为正数,则表明顺时针;如果负则逆时针;若等于0则共线。 3. **快速排斥实验** 首先做一个矩形包围盒测试——即检查两个线所在的最小外接矩形是否有重叠区域。如果没有重叠直接判定为不相交。 4. **跨立试验 (Cross-over Test)** 确认每个线的两端分别位于另一个线两侧即可认为它们交叉了。这通过上述提到过的叉积运算完。 5. **特殊情况处理** 包含但不限于如下的几种情况需要单独讨论: - 完全重合的部分; - 存在一个公共端点但并不完全穿过等边缘状况。 6. **代码框架示例(Pseudo code):** ```python def cross_product(p1,p2,p3): return (p2[0]-p1[0])*(p3[1]-p1[1])-(p2[1]-p1[1])*(p3[0]-p1[0]) def on_segment(p,q,r): if ((q[0] <= max(p[0], r[0])) and (q[0] >= min(p[0], r[0])) and (q[1] <= max(p[1], r[1])) and (q[1] >= min(p[1], r[1]))): return True; return False; def do_segments_intersect(A,B,C,D): # 计算四个方向的叉积值 o1 = cross_product(A, C, B) o2 = cross_product(A, D, B) o3 = cross_product(C, A, D) o4 = cross_product(C, B, D) # 标准情况判断 if(o1 !=o2 && o3!=o4): return True # 特殊情况逐一验证... ``` 7. 最终结合所有条件得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值