【数据结构】算法7.7-7.8 无向图的连通分量和生成树

本文深入探讨数据结构中无向图的连通分量概念,阐述如何寻找图的最小生成树,理解图的遍历算法如深度优先搜索和广度优先搜索在解决这些问题中的应用。
摘要由CSDN通过智能技术生成
#include<stdio.h>
#include<string.h>
#include<stdlib.h>

#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
#define OVERFLOW -2

#define MAXSIZE 20  //最大顶点数
typedef int Status;
typedef int ElemType;
typedef struct CSNode
{
    ElemType data;
    struct CSNode *firstchild,*nextsibling;
}CSNode,*CSTree;

typedef int Boolean;
Boolean Visited[MAXSIZE];  //访问标志数组

#define  INFINITY 65535   //最大值∞
#define MAX_VERTEX_NUM 20  //最大顶点个数

typedef int Status;
typedef int VRType;
typedef char InfoType;
typedef int VertexType;
typedef enum {DG,DN,UDG,UDN}GraphKind;   //{有向图,有向网,无向图,无向网}

typedef struct ArcCell
{
    VRType adj;  //VRType 是顶点关系类型。对无权图,用0或1表示相邻否;对带权图,则为权值类型
    InfoType *info; //该弧相关信息的指针
}ArcCell, AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];
typedef struct
{
    VertexType vexs[MAX_VERTEX_NUM];  //顶点向量
    AdjMatrix arcs;  //邻接矩阵
    int vexnum,arcnum;  //图的当前顶点数和弧数
    GraphKind kind;  //图的种类标志
}MGraph;

/*******************************声明部分****************************************/
int FirstAdjVex(MGraph G,int v);
//返回v的第一个邻接顶点
int NextAdjVex(MGraph G,int v,int w);
//返回v的(相对于w的)下一个邻接顶点
VertexType Getvex(MGraph G,int v);
//v是G中的某个顶点,返回v的值

/*******************************函数部分****************************************/
Status CreateUDG(MGraph *G)
{
    printf("\n构造无向图\n");
    int i,j,k; //i,j,k
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值