自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(35)
  • 收藏
  • 关注

原创 Spring AI框架全方位详解

Spring AI是Spring生态中面向AI应用开发的开源框架,旨在降低Java开发者集成AI能力的门槛。它通过统一API和标准化抽象,屏蔽不同AI供应商和模型类型的差异,支持聊天、图像生成、嵌入模型等多种功能。核心特性包括跨供应商可移植API、与Spring生态无缝集成、丰富的模型支持、企业级工程化能力及灵活的扩展机制。采用分层架构设计,分为应用层、抽象层和实现层,确保低耦合、高扩展性和易维护性。适用于企业级聊天机器人、智能内容生成、语义检索系统等场景,帮助开发者快速构建稳定、可移植的AI应用,同时降低

2026-02-03 11:59:15 312

原创 Agent死循环问题深度解析与解决方案

摘要: Agent死循环是智能体开发中的常见问题,表现为重复执行无效操作而无法完成任务。其根源包括提示词设计缺陷、状态管理缺失和边界约束不足。解决方案需从三方面入手:优化提示词以明确流转规则和终止条件;构建步骤追踪与状态管理系统;设置刚性边界约束如最大执行步数和超时机制。以物流查询Agent为例,可通过结构化提示词、状态枚举和历史轨迹存储实现优化。通用场景建议拆分复杂任务、约束输出格式并加强日志监控。最终通过规则明确化、状态追踪和边界约束可有效解决死循环问题,提升智能体稳定性。

2026-02-02 19:59:13 760

原创 OpenManus开源自主规划智能体解析

OpenManus是一款开源自主规划智能体框架,通过分层代理架构实现复杂任务的自动化执行。其核心特点是:1)采用ReAct推理模式自主拆解任务并规划执行路径;2)在隔离环境中安全调用多样化工具;3)支持多步骤协作的复杂任务场景。该框架由基础代理、ReAct代理和工具调用代理组成,具有低耦合、高扩展性等优势,适用于数据处理、代码开发、办公自动化等场景。OpenManus降低了复杂任务的技术门槛,同时通过虚拟机环境确保执行安全性,为开发者和终端用户提供了高效的自动化解决方案。

2026-02-01 19:37:22 966

原创 ReAct框架:智能体的思考与行动闭环

摘要: ReAct框架通过“思考-行动-反馈”循环机制,结合大语言模型的推理能力与外部工具交互,解决复杂任务中的逻辑断裂和幻觉问题。其核心流程包括:1)显性化思考,拆解任务目标;2)调用工具或环境交互执行行动;3)基于反馈迭代优化。该框架适用于需多步推理和实时数据的场景(如行程规划、技术排查),优势在于可解释性强、抗幻觉能力突出,但效率较低且依赖工具生态。相比传统LLM,ReAct更贴近人类“边想边做”的决策模式,适合动态交互型任务。

2026-01-31 08:57:03 569

原创 A2A协议:智能体协作的通用语言

摘要: A2A协议是AI智能体领域的标准化通信协议,旨在解决多智能体协作中的互操作难题。它采用客户端-服务器模式,通过标准化HTTP交互实现任务分发与结果反馈,支持JSON-RPC、SSE和Webhook三种传输方式。协议设计遵循五大原则:支持智能体自主协商、复用现有技术标准、内置安全机制、兼容异步任务和多模态内容。其核心价值在于降低跨框架集成成本、提升协作效率(如物流调度实时同步)并推动生态开放,已获Atlassian等50多家厂商支持,成为智能体生态的通用协作语言。

2026-01-30 10:45:46 872

原创 大模型与外部资源交互的MCP协议全流程解析

MCP协议工作流程实现了大模型与外部资源的标准对接,包含7个核心阶段:1)建立安全连接;2)获取工具能力清单;3)构造标准化请求;4)加密传输指令;5)服务端解析并调用资源;6)封装返回结果;7)生成用户输出。全程遵循JSON-RPC 2.0规范,通过统一协议屏蔽底层差异,支持多端复用。典型应用场景如大模型查询数据库时,MCP将自然语言需求转化为SQL指令并返回结构化数据。该协议显著降低开发成本,确保安全可控,成为连接AI生态与外部资源的关键桥梁。

2026-01-27 12:13:32 951

原创 向量数据库:RAG系统的核心引擎

摘要 向量数据库是专为高维向量数据优化的存储检索系统,支持高效的语义相似度查询,是RAG系统的核心组件。相比传统数据库,它通过向量索引算法实现毫秒级响应,解决高维向量存储与语义检索的痛点。主流产品包括:Milvus(开源分布式,适合大规模场景)、Pinecone(全托管云服务,适合快速开发)、Chroma(轻量级,适合小规模验证)、Weaviate(多模态支持)和Qdrant(低资源占用)。选型需关注数据规模、部署方式、功能需求(如多模态/地理空间过滤)、性能、成本及团队技术栈,优先匹配实际应用场景。

2026-01-26 11:49:48 1353

原创 MCP与Function Calling的核心差异与应用边界

摘要: MCP(通用交互协议)与Function Calling(模型内置能力)是AI对接外部资源的两种关键技术。MCP作为跨生态标准,提供统一接口格式(基于JSON-RPC 2.0),实现多模型与多资源的无缝对接,降低开发成本;而Function Calling是厂商为特定模型设计的工具调用功能,仅适用于单一生态,开发便捷但扩展性差。核心差异体现在技术层级、兼容性、安全管控等8个维度:MCP适合企业级多模型/多资源场景,Function Calling适合快速原型验证。未来二者可能协同使用,MCP有望成为

2026-01-25 17:22:11 1148

原创 MCP架构核心组件

摘要: MCP(Model Context Protocol)采用客户端-服务器架构,通过五大核心组件实现大模型与外部资源的标准化交互。主机应用发起需求后,MCP客户端按协议生成结构化请求,MCP服务端将其转化为原生指令调用外部资源(如数据库、API),结果经协议封装后返回。协议规范层统一数据格式与安全规则,确保跨资源兼容性。该架构优势包括解耦性强(资源与主机应用隔离)、扩展性高(新增资源仅需适配服务端)、安全性可控(统一权限与加密标准),适用于AI大模型、开发工具等多场景的分布式资源协同。

2026-01-24 19:57:17 912

原创 MCP协议(Model Context Protocol)及其在AI大模型系统中的作用

MCP协议:AI大模型与外部资源交互的统一标准 MCP协议(Model Context Protocol)是Anthropic推出的开放技术标准,旨在解决大模型与外部资源(数据库、API、工具等)交互时的适配碎片化问题。其核心价值包括: 降本增效:通过统一接口规范,减少定制化开发,降低80%以上的维护成本; 生态互联:支持大模型与各类资源自由组合,打破生态壁垒; 能力拓展:帮助大模型突破训练数据限制,实时调用外部工具获取最新信息; 安全可控:内置权限管理、数据加密和审计日志,满足企业级安全需求。 典型应用场

2026-01-21 19:12:47 1185

原创 RAG中的Embedding技术

Embedding技术是RAG系统的核心,通过将非结构化数据转化为高维向量,实现语义检索。其本质是将语义相似性映射为向量空间距离,使机器能理解文本深层含义。主流模型包括商用API(如OpenAI)和开源本地模型(如BERT),选择时需考虑语义捕捉能力、维度、速度等特性。Embedding使RAG能实现高效存储、快速匹配和精准召回,是连接自然语言与机器计算的关键桥梁。

2026-01-20 19:51:34 1204

原创 RAG分块技术:精准检索的7大核心策略

RAG中的分块技术解析 分块(Chunking)是RAG系统的核心预处理步骤,将长文本拆分为语义完整、长度适中的文本块(500-1000字)。其核心价值在于: 适配模型处理限制,避免超长文本截断 提升检索精准度,实现局部信息定位 降低计算存储成本 分块需遵循三大原则: 语义完整性优先 长度适配模型窗口 确保检索相关性 主流分块策略包括: 固定长度分块(简单但可能破坏语义) 按自然边界分块(最常用) 按主题分块(精准度高) 层次化分块(多粒度检索) 技术实现上可通过LangChain等工具快速落地,需注意避免

2026-01-19 19:33:26 1206

原创 RAG自查询:让AI精准检索的秘密武器

摘要: RAG中的自查询(Self-Query)通过大模型解析用户问题,提取核心意图与约束条件(如时间、领域等),生成结构化检索指令(语义+属性过滤),解决传统检索依赖关键词匹配、忽略隐含逻辑的问题。其核心价值在于提升复杂查询的精准度,适配多条件组合场景(如“2024年金融领域RAG方案”)。实现流程包括文档元数据预处理、设计解析Prompt、生成检索指令及执行优化。适用于带结构化元数据的知识库、多约束查询及高精度场景(如医疗、法律)。主流工具包括LangChain的SelfQueryRetriever及支

2026-01-18 20:13:45 1109

原创 RAG重排序:提升检索精度的关键技巧

RAG(检索增强生成)中的Rerank(重排序)是提升检索结果质量的关键环节。它通过更精细的语义分析,对初步检索(如向量检索)返回的候选文档进行二次筛选,解决初步检索"快但不准"的问题。Rerank采用交叉编码器模型,整体评估问题与文档的相关性,过滤伪相关文档,为后续生成提供更精准的上下文。该技术特别适用于高精度要求的场景(如医疗、法律问答),通过"广撒网+精筛选"的策略,平衡效率与准确性。实现时需合理选择模型(如Cross-Encoder)、控制候选集规模,并与Pr

2026-01-15 19:08:20 1083

原创 RAG的主要流程

摘要:RAG(检索增强生成)是一种为大模型挂载外部知识库的技术,通过"检索-增强-生成"三步骤提升回答准确性。核心流程包括:将文档和问题向量化后在向量数据库检索相关内容,整合成新Prompt输入大模型生成答案。该技术解决了大模型知识滞后、幻觉和内部机密处理问题,无需重新训练即可适配垂直领域需求。主要优势在于动态结合检索与生成能力,使AI能基于最新和专有知识给出准确回答,适用于各类专业化场景。

2026-01-12 20:03:47 406

原创 ReAct Agent 后端架构解析

ReAct Agent是一种结合推理(Reasoning)和行动(Acting)的AI范式,通过模拟人类"思考-行动-反思"的认知过程实现智能决策。其分层架构包含表示层、逻辑层和执行层,关键组件包括状态管理器、知识库连接器和动作执行器等。开发实践涉及定义领域模型、构建推理引擎和实现执行器。Spring AI实现示例展示了如何通过协调器整合推理组件和行动组件,应用于异常处理系统和业务流程自动化等场景。该框架通过动态交互实现渐进式优化,相比纯推理或纯行动方法更具适应性。

2025-12-26 15:28:00 805

原创 Spring AI Advisors 深度解析与应用指南

摘要:本文深入解析了Spring AI Advisors的核心功能与应用场景,介绍了其在AI交互中的关键作用。Advisors通过拦截和增强AI请求/响应流程,实现内容过滤、上下文管理等功能,支持链式处理和自定义扩展。详细阐述了三种聊天记忆实现方式(Message/Prompt/VectorStore)及其适用场景,分析了短期与长期记忆的区别。文章还探讨了会话ID管理策略和安全组件SafeGuardAdvisor的应用,为构建高效、安全的AI交互系统提供了完整解决方案。

2025-12-25 20:55:17 1090

原创 RAG技术原理与应用入门

RAG技术结合信息检索与文本生成,通过离线文档处理(分割、向量化、存储)和实时查询(检索相关文本、增强提示、生成回答)实现精准问答。核心在于相似度计算(如余弦相似度)和向量数据库选择(如PgVector、Pinecone等),突破模型数据限制,减少错误回答。该技术特别适用于企业知识库场景,能基于最新文档提供准确答案。

2025-12-24 11:24:27 1296

原创 初识提示工程(Prompt Engineering)

提示工程(Prompt Engineering)又称指令工程,是指通过精心设计输入指令(提示词)来引导AI模型生成预期输出的技术。提示词就是你发给大模型的指令

2025-12-23 23:27:23 537

原创 日志记录方案全解析:从基础到进阶

本文介绍了日志记录的基本概念、用途和常见方案。日志用于系统监控、问题排查、安全审计等,主要记录方式包括业务代码嵌套、AOP切面和数据库Binlog监听。文章推荐了Java日志框架SLF4J、Log4j等,并提出了日志打印规范,如敏感数据脱敏、合理选择日志级别、禁止生产环境输出DEBUG日志等。对于分布式系统,建议采用ELK栈集中收集日志,实现TraceID关联和告警机制。良好的日志实践能有效提升系统可维护性和问题排查效率。

2025-12-22 15:49:43 959

原创 Nginx高性能服务器全解析

Nginx是一款高性能的HTTP/反向代理服务器,具有内存占用少、高并发、跨平台等特点。它广泛应用于静态资源服务、反向代理、负载均衡等场景,支持多种负载均衡策略如轮询、IP哈希等。Nginx通过事件驱动架构和高效内存管理实现高性能,常用命令包括启动、停止和配置重载。性能优化方式包括工作进程优化、连接数调整和Gzip压缩等。相比LVS和HAProxy,Nginx更专注于七层应用代理。为保证高可用性,可采用Keepalived+Nginx方案,通过主备配置和虚拟IP实现故障转移。

2025-12-21 13:28:48 1143

原创 Prometheus:云原生监控利器全解析

Prometheus是一款开源的系统监控和告警工具,由SoundCloud开发并加入CNCF。它采用Go语言编写,具有高性能TSDB时序数据库,通过Pull模型采集数据,支持与Grafana集成展示。监控系统可提供长期趋势分析、数据可视化、故障预警和运维辅助等功能,覆盖硬件、服务器、数据库、中间件和应用等监控对象。Prometheus架构包含Server、Exporter、Push gateway和Alert Manager等组件,支持服务发现和集群高可用。其本地存储设计简单高效,但存在持久化和扩展性限制,

2025-12-20 14:57:43 1204

原创 【设计模式|第十篇】状态模式:优雅管理对象行为

状态模式是一种行为型设计模式,允许对象在内部状态改变时改变其行为。它通过将状态相关行为封装到独立的状态类中,消除条件分支,实现状态转换的封装。核心结构包含Context(上下文)、State(抽象状态)和ConcreteState(具体状态)三个角色。该模式适用于对象行为随状态变化、包含大量状态条件判断的场景,如订单系统、游戏角色等。相比策略模式,状态模式更关注状态的自动转换。实现时需权衡类数量增加与结构清晰度的关系,合理选择状态机实现方案(如Spring StateMachine或Cola-StateMa

2025-12-19 10:32:52 892

原创 【设计模式|第九篇】策略模式实战:优雅解耦业务逻辑

策略模式是一种行为设计模式,将算法封装为独立对象,使其可相互替换。该模式包含策略接口、具体策略类和上下文类三个核心组件,通过对象组合替代条件分支,实现算法与使用者的解耦。策略模式优势包括遵循开闭原则、消除条件语句、提高灵活性和可维护性,典型应用于电商促销、支付系统等场景。实际应用中,可通过动态切换策略对象实现不同业务逻辑,如订单处理时灵活选择支付方式或促销方案。

2025-12-18 21:21:28 697

原创 【设计模式|第八篇】深入解析责任链模式

责任链模式是一种行为型设计模式,通过创建处理请求的接收者链来解耦发送者和接收者。该模式的核心思想是将请求沿处理链传递,直到有对象处理为止,实现动态链式处理和责任分离。典型应用包括订单处理系统、OA审批流程和Web请求过滤链等。模式结构包含抽象处理器和具体处理器,实现方式灵活且易于扩展。优点包括降低耦合度、增强灵活性和单一职责原则,但可能存在性能影响和调试困难的问题。实际案例包括Java Servlet的FilterChain和Spring Security的过滤器链实现。

2025-12-17 15:44:36 939

原创 【设计模式|第七篇】装饰器模式:动态扩展功能的艺术

装饰器模式是一种动态扩展对象功能的结构型设计模式。它通过创建包装类来为对象添加新职责,而无需修改原对象结构。该模式包含抽象构件、具体构件、抽象装饰器和具体装饰器四个核心角色,完美体现了开闭原则。典型应用场景包括Java I/O流、咖啡订单系统等需要动态扩展功能的场合。其优点在于比继承更灵活、避免类爆炸、符合开闭原则,但也可能产生大量小对象和增加调试难度。装饰器模式特别适合需要运行时动态添加功能或避免使用继承的场景。

2025-12-15 18:26:12 754

原创 【设计模式|第六篇】观察者模式:解耦利器全解析

观察者模式详解摘要 观察者模式是一种行为设计模式,建立一对多的对象依赖关系,当被观察对象状态改变时自动通知所有观察者。该模式包含四个核心角色:主题(管理观察者列表)、具体主题(维护状态)、观察者(定义更新接口)和具体观察者(实现业务逻辑)。其优势在于解耦对象关系、支持动态订阅和广播通信,但需注意性能问题和循环依赖风险。典型应用场景如电商支付系统,支付成功后自动触发订单更新、积分增加等后续操作。高级应用技巧包括优先级控制、部分通知、异步处理和生命周期管理等。该模式在Java、Spring等框架中有不同实现方式

2025-12-15 15:56:33 605

原创 【设计模式|第五篇】代理模式:控制访问的智能中介

代理模式是一种结构型设计模式,通过代理对象控制对真实对象的访问。核心角色包括抽象主题(接口)、真实主题(实际对象)和代理(控制访问)。代理模式可以实现远程代理、虚拟代理、保护代理和智能引用等功能,在不修改真实对象代码的情况下增加额外功能。Java中可通过静态代理(编译时确定)和动态代理(运行时生成)实现,后者包括JDK动态代理(基于接口)和CGLIB动态代理(基于类)。代理模式广泛应用于访问控制、延迟加载、日志记录等场景。

2025-12-14 16:42:15 790

原创 【设计模式|第四篇】适配器模式:让不兼容的接口协同工作

摘要:适配器模式是一种结构型设计模式,通过转换接口使不兼容的类能协同工作。它包含目标接口、被适配者和适配器三个核心角色,具有类适配器(继承实现)和对象适配器(组合实现)两种实现方式。该模式能增强代码复用性、提高系统灵活性,但会增加一定复杂性。实际应用中常见于Java IO流转换、日志框架桥接等场景。设计时需权衡接口稳定性与扩展性,并注意与其他模式的区别。

2025-12-14 16:04:05 910

原创 Seata:一站式分布式事务解决方案

Seata是一款开源的分布式事务解决方案,提供AT、TCC、Saga和XA四种模式满足不同业务场景需求。AT模式通过拦截SQL自动生成回滚日志实现无侵入式事务;TCC模式要求开发者实现Try-Confirm-Cancel三阶段接口;Saga模式适用于长流程业务,通过正向操作和补偿机制保证最终一致性;XA模式基于两阶段提交协议实现严格一致性。Seata包含TC事务协调器、TM事务管理器和RM资源管理器三大核心组件,可应用于电商下单、资金转账等分布式场景,确保跨服务操作的数据一致性。

2025-12-10 16:06:33 904

原创 【设计模式|第三篇】单例模式:高效全局访问的艺术

单例模式是一种创建型设计模式,确保类只有一个实例并提供全局访问点。核心实现要点包括私有构造方法、静态实例变量和静态公有方法。主要优点包括节省资源、全局控制和避免重复初始化,但存在扩展性差、职责过重和测试困难等缺点。常见实现方式有饿汉式(线程安全但非懒加载)、懒汉式(需同步保证线程安全)、双重检查锁定(高性能)、静态内部类(简洁高效)和枚举(最安全简洁)。适用场景包括频繁创建/销毁对象、资源密集型对象和工具类等。不同实现方式在线程安全、懒加载和性能方面各有特点,需根据具体需求选择。

2025-12-09 16:31:26 984

原创 【设计模式|第二篇】深入理解工厂模式

工厂模式是创建型设计模式的核心成员,主要包括三种形式:简单工厂、工厂方法和抽象工厂。简单工厂通过单一工厂类集中创建对象,实现客户端与具体类的解耦;工厂方法将创建逻辑延迟到子类,符合开闭原则;抽象工厂则用于创建相关产品族。三种模式各有适用场景:简单工厂适合产品较少的情况,工厂方法便于扩展新产品,抽象工厂则适用于多系列产品。实际应用中,JDK集合框架、日志系统和UI组件都广泛采用了工厂模式,体现了其在对象创建和管理方面的优势,但也需注意避免过度设计带来的复杂度问题。

2025-12-08 17:28:28 693

原创 【设计模式|第一篇】初识设计模式

设计模式(Design Pattern)是一套针对软件设计中常见问题的可复用解决方案,适用于特定场景。它并非可直接转化为代码的最终设计,而更像是解决问题的蓝图或模板,指导如何组织和构建类与对象。

2025-12-07 21:35:38 375

原创 Window环境下,将SpringBoot项目打包到docker上进行发布

然后运行以下命令来构建Docker镜像:docker build -t (加上你的项目名,注意不要漏掉我括号后面的点) .重启后以管理员身份运行CMD,输入指令wsl --set-default-version 2,将wsl版本设置为2.输入指令wsl --update --web-download,进行下载等待读条结束。之后安装docker,上docker官网下载与自己电脑相对应的版本即可。项目根目录(包含Dockerfile的目录),输入cmd打开命令行。打开dockerhub并登录。

2025-12-05 18:00:43 363

原创 熔断降级详解

限流、熔断和降级是保障分布式系统稳定运行的关键技术手段,也是分布式系统稳定的基石。​ 因此,深入理解并合理运用限流、熔断和降级技术,对于提升分布式系统的稳定性、可用性和用户体验,具有至关重要的意义。本文将详细阐述限流、熔断和降级的概念、作用、实现策略与方法,以及它们在实际项目中的应用。

2025-12-05 17:26:24 626 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除