文章目录
摘要
杠杆型ETF(如TQQQ)承诺提供标的资产(如QQQ)的每日杠杆收益(如3倍),但长期回报往往偏离预期。本文从数学角度分析杠杆ETF的复利效应、波动损耗(Volatility Decay),并推导其长期表现的数学模型,帮助投资者理解其真实风险。
1. 杠杆ETF的运作原理
杠杆ETF(如 TQQQ、SQQQ)并不直接持有股票,而是通过 衍生品(期货、互换合约) 实现杠杆。其目标是:
每日收益 = β × 标的指数收益 每日收益 = β × 标的指数收益 每日收益=β×标的指数收益
其中,β 是杠杆倍数(如 TQQQ 的 β=3)。
但关键问题在于:
“每日重置”(Daily Rebalancing)导致长期回报与直觉不同。
2. 单日杠杆的数学表达
假设:
- 标的指数(QQQ)第 i 天的收益为 r i r_i ri (如 r i = 0.01 r_i =0.01 ri=0.01 表示 +1%)。
- 杠杆ETF(TQQQ)的每日收益为 R i = β r i R_i =βr_i Ri=βri 。
则 TQQQ 的净值 P n P_n Pn 经过 n n n 天后为:
P n = P 0 ∏ i = 1 n ( 1 + β r i ) P_n=P_0∏_{i=1}^n(1+\beta r_i) Pn=P0i=1∏n(1+βri)
而 QQQ 的净值
Q
n
Q_n
Qn 为:
Q
n
=
Q
0
∏
i
=
1
n
(
1
+
r
i
)
Q_n=Q_0∏_{i=1}^n(1+r_i)
Qn=Q0i=1∏n(1+ri)
问题:若 Q n Q_n Qn 最终回到原点(如震荡市), P n P_n Pn 会如何?
3. 波动损耗(Volatility Decay)的数学分析
案例1:QQQ 先涨后跌相同幅度
假设:
- QQQ 第1天涨 x % x\% x%,第2天跌 x % x\% x%(如 x = 10 x=10 x=10)
- TQQQ 的收益为 3 x % 3x\% 3x% 和 − 3 x % −3x\% −3x%
计算最终净值:
Q
2
=
Q
0
(
1
+
x
)
(
1
−
x
)
=
Q
0
(
1
−
x
2
)
(
亏损
x
2
)
Q_2=Q_0(1+x)(1−x)=Q_0(1−x^2)(亏损x^2)
Q2=Q0(1+x)(1−x)=Q0(1−x2)(亏损x2)
P
2
=
P
0
(
1
+
3
x
)
(
1
−
3
x
)
=
P
0
(
1
−
9
x
2
)
(
亏
9
x
2
)
P
=
P
0
(
1
+
3
x
)
(
1
−
3
x
)
=
P
0
(
1
−
9
x
2
)
(
亏损
9
x
2
)
P_2=P_0(1+3x)(1−3x)=P_0(1−9x^2)(亏 9x^2)P =P0 (1+3x)(1−3x)=P_0 (1−9x^2 )(亏损 9x^2 )
P2=P0(1+3x)(1−3x)=P0(1−9x2)(亏9x2)P=P0(1+3x)(1−3x)=P0(1−9x2)(亏损9x2)
结论:
- QQQ 亏损 x 2 x^2 x2 (如 10% → \rightarrow → 1% 亏损)。
- TQQQ 亏损 9 x 2 9x^2 9x2 (如 10% → \rightarrow → 9% 亏损)。
- 杠杆ETF的波动损耗是标的的 β 2 β^2 β2 倍(本例中 3 2 = 9 3^2=9 32=9)。
案例2:QQQ 震荡但无趋势(均值回归)
假设 QQQ 价格序列:
100
→
110
→
100
→
110
→
100
100 \rightarrow110 \rightarrow 100 \rightarrow 110 \rightarrow100
100→110→100→110→100
计算 TQQQ 净值:
P
4
=
100
×
(
1.3
)
×
(
0.727
)
×
(
1.3
)
×
(
0.727
)
≈
89.4
P_4 =100×(1.3)×(0.727)×(1.3)×(0.727)≈89.4
P4=100×(1.3)×(0.727)×(1.3)×(0.727)≈89.4
尽管 QQQ 回到原点,TQQQ 亏损 10.6%,验证了波动损耗的存在。
4. 长期回报的数学模型
(1)连续复利视角
假设标的指数收益
r
i
r_i
ri 是独立同分布的随机变量,其均值为
μ
μ
μ,方差为
σ
2
σ^2
σ2。
杠杆ETF的长期对数收益(Compound Annual Growth Rate, CAGR)可近似为:
CAGR E T F ≈ β μ − β ( β − 1 ) 2 σ 2 \text{CAGR}_{ETF}≈βμ−\frac{β(β−1)}2σ^2 CAGRETF≈βμ−2β(β−1)σ2
其中:
- β μ β_μ βμ:杠杆放大的收益。
- β μ − β ( β − 1 ) 2 σ 2 βμ−\frac{β(β−1)}2σ^2 βμ−2β(β−1)σ2 :波动损耗项(与方差成正比)。
推论:
- 当市场高波动( σ 2 σ^2 σ2 大)时,杠杆ETF的长期回报可能远低于 β×标的收益
- 在趋势行情( μ ≫ σ 2 μ≫σ^2 μ≫σ2)中,杠杆ETF表现更优;在震荡市中表现更差。
(2)几何布朗运动模拟
假设 QQQ 价格服从几何布朗运动:
d
Q
=
μ
Q
d
t
+
σ
Q
d
W
dQ=μQdt+σQdW
dQ=μQdt+σQdW
则 TQQQ 的价格动态为:
d P = β P d Q Q + 管理成本 = β μ P d t + β σ P d W − c P d t dP = βP \frac{dQ}{Q} +管理成本=βμPdt+βσPdW−cPdt dP=βPQdQ+管理成本=βμPdt+βσPdW−cPdt
其中 c 是管理费(如 TQQQ 的 0.95% 年费)。
解此随机微分方程可得:
关键观察:
- 杠杆ETF的长期增长受 β 2 σ 2 β^2 σ^2 β2σ2 压制(波动损耗)。
- 若 β μ < β 2 σ 2 2 + c βμ< \frac{β^2 σ^2}{2}+c βμ<2β2σ2+c,TQQQ 长期会趋近于 0。
5. 实际投资启示
- 杠杆ETF适合短期趋势交易,而非长期持有。
- 高波动市场(如2022年)会加速损耗,即使标的指数未来上涨,TQQQ 可能无法恢复。
- 做空杠杆ETF(如 SQQQ)风险更高,因波动损耗 + 管理费双重打击。
结论
杠杆ETF的数学本质是 路径依赖(Path-Dependent) 的衍生品,其长期表现受波动率压制,而非简单的杠杆倍数。投资者需理解:
TQQQ收益 ≠ 3 × QQQ长期收益 \text{TQQQ} 收益≠3×\text{QQQ} 长期收益 TQQQ收益=3×QQQ长期收益
正确使用方式:
- 作为短期对冲或趋势交易工具。
- 避免在震荡市中长期持有。
参考文献
- Cheng & Madhavan (2009), The Dynamics of Leveraged and Inverse ETFs
- Avellaneda & Zhang (2010), Path-Dependence of Leveraged ETF Returns
- NASDAQ, TQQQ Prospectus