dfs&bfs的区别(题,列)

文章讨论了一个关于奇怪电梯的数学问题,其中电梯的上下移动受楼层上数字的限制。给定起始楼层A和目标楼层B,以及每个楼层的数字K_i,目标是找出从A到B所需的最少按钮按下次数。文章提供了两种解决方案,深度优先搜索(DFS)和广度优先搜索(BFS),并指出BFS通常比DFS运行速度更快。
摘要由CSDN通过智能技术生成

奇怪的电梯

题目描述

呵呵,有一天我做了一个梦,梦见了一种很奇怪的电梯。大楼的每一层楼都可以停电梯,而且第 i i i 层楼( 1 ≤ i ≤ N 1 \le i \le N 1iN)上有一个数字 K i K_i Ki 0 ≤ K i ≤ N 0 \le K_i \le N 0KiN)。电梯只有四个按钮:开,关,上,下。上下的层数等于当前楼层上的那个数字。当然,如果不能满足要求,相应的按钮就会失灵。例如: 3 , 3 , 1 , 2 , 5 3, 3, 1, 2, 5 3,3,1,2,5 代表了 K i K_i Ki K 1 = 3 K_1=3 K1=3 K 2 = 3 K_2=3 K2=3,……),从 1 1 1 楼开始。在 1 1 1 楼,按“上”可以到 4 4 4 楼,按“下”是不起作用的,因为没有 − 2 -2 2 楼。那么,从 A A A 楼到 B B B 楼至少要按几次按钮呢?

输入格式

共二行。

第一行为三个用空格隔开的正整数,表示 N , A , B N, A, B N,A,B 1 ≤ N ≤ 200 1 \le N \le 200 1N200 1 ≤ A , B ≤ N 1 \le A, B \le N 1A,BN)。

第二行为 N N N 个用空格隔开的非负整数,表示 K i K_i Ki

输出格式

一行,即最少按键次数,若无法到达,则输出 -1

样例 #1

样例输入 #1

5 1 5
3 3 1 2 5

样例输出 #1

3

提示

对于 100 % 100 \% 100% 的数据, 1 ≤ N ≤ 200 1 \le N \le 200 1N200 1 ≤ A , B ≤ N 1 \le A, B \le N 1A,BN 0 ≤ K i ≤ N 0 \le K_i \le N 0KiN

dfs:

#include<cstdio>
#include<iostream>
using namespace std;
int n,a,b,ans=0x7ffffff;
int to[205];
bool vis[205];
void dfs(int now,int sum)//now表示当前搜到的楼层,sum表示按钮次数
{
    if(now==b) ans=min(ans,sum);
    if(sum>ans) return;
    vis[now]=1;
    //不越界就搜
    if(now+to[now]<=n&&!vis[now+to[now]]) dfs(now+to[now],sum+1);
    if(now-to[now]>=1&&!vis[now-to[now]]) dfs(now-to[now],sum+1);
    vis[now]=0;//回溯
}
int main()
{
    scanf("%d%d%d",&n,&a,&b);
    for(int i=1;i<=n;i++) scanf("%d",&to[i]);
    vis[a]=1;
    dfs(a,0);
    if(ans!=0x7ffffff) printf("%d",ans);
    else printf("-1");
    return 0;
}

bfs:

#include<bits/stdc++.h>
using namespace std;
int n,a,b,to[205];
bool vis[205];
struct node{int id,step;}x;//id表示楼层号,step表示按钮次数
queue<node> q;
int main()
{
	scanf("%d%d%d",&n,&a,&b);
	for(int i=1;i<=n;i++) scanf("%d",&to[i]);
	q.push((node){a,0});
	while(q.size())
	{
		x=q.front();q.pop();
		if(x.id==b) break;
		if(x.id+to[x.id]<=n&&!vis[x.id+to[x.id]])
		{
			q.push((node){x.id+to[x.id],x.step+1});
			vis[x.id+to[x.id]]=1;
		}
		if(x.id-to[x.id]>=1&&!vis[x.id-to[x.id]])
		{
			q.push((node){x.id-to[x.id],x.step+1});
			vis[x.id-to[x.id]]=1;
		}
	}
	if(x.id==b) printf("%d",x.step);
	else printf("-1");
	return 0;
}

bfs的运行速度会比dfs的运行速度快

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冬樱春雪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值