奇怪的电梯
题目描述
呵呵,有一天我做了一个梦,梦见了一种很奇怪的电梯。大楼的每一层楼都可以停电梯,而且第 i i i 层楼( 1 ≤ i ≤ N 1 \le i \le N 1≤i≤N)上有一个数字 K i K_i Ki( 0 ≤ K i ≤ N 0 \le K_i \le N 0≤Ki≤N)。电梯只有四个按钮:开,关,上,下。上下的层数等于当前楼层上的那个数字。当然,如果不能满足要求,相应的按钮就会失灵。例如: 3 , 3 , 1 , 2 , 5 3, 3, 1, 2, 5 3,3,1,2,5 代表了 K i K_i Ki( K 1 = 3 K_1=3 K1=3, K 2 = 3 K_2=3 K2=3,……),从 1 1 1 楼开始。在 1 1 1 楼,按“上”可以到 4 4 4 楼,按“下”是不起作用的,因为没有 − 2 -2 −2 楼。那么,从 A A A 楼到 B B B 楼至少要按几次按钮呢?
输入格式
共二行。
第一行为三个用空格隔开的正整数,表示 N , A , B N, A, B N,A,B( 1 ≤ N ≤ 200 1 \le N \le 200 1≤N≤200, 1 ≤ A , B ≤ N 1 \le A, B \le N 1≤A,B≤N)。
第二行为 N N N 个用空格隔开的非负整数,表示 K i K_i Ki。
输出格式
一行,即最少按键次数,若无法到达,则输出 -1
。
样例 #1
样例输入 #1
5 1 5
3 3 1 2 5
样例输出 #1
3
提示
对于 100 % 100 \% 100% 的数据, 1 ≤ N ≤ 200 1 \le N \le 200 1≤N≤200, 1 ≤ A , B ≤ N 1 \le A, B \le N 1≤A,B≤N, 0 ≤ K i ≤ N 0 \le K_i \le N 0≤Ki≤N。
dfs:
#include<cstdio>
#include<iostream>
using namespace std;
int n,a,b,ans=0x7ffffff;
int to[205];
bool vis[205];
void dfs(int now,int sum)//now表示当前搜到的楼层,sum表示按钮次数
{
if(now==b) ans=min(ans,sum);
if(sum>ans) return;
vis[now]=1;
//不越界就搜
if(now+to[now]<=n&&!vis[now+to[now]]) dfs(now+to[now],sum+1);
if(now-to[now]>=1&&!vis[now-to[now]]) dfs(now-to[now],sum+1);
vis[now]=0;//回溯
}
int main()
{
scanf("%d%d%d",&n,&a,&b);
for(int i=1;i<=n;i++) scanf("%d",&to[i]);
vis[a]=1;
dfs(a,0);
if(ans!=0x7ffffff) printf("%d",ans);
else printf("-1");
return 0;
}
bfs:
#include<bits/stdc++.h>
using namespace std;
int n,a,b,to[205];
bool vis[205];
struct node{int id,step;}x;//id表示楼层号,step表示按钮次数
queue<node> q;
int main()
{
scanf("%d%d%d",&n,&a,&b);
for(int i=1;i<=n;i++) scanf("%d",&to[i]);
q.push((node){a,0});
while(q.size())
{
x=q.front();q.pop();
if(x.id==b) break;
if(x.id+to[x.id]<=n&&!vis[x.id+to[x.id]])
{
q.push((node){x.id+to[x.id],x.step+1});
vis[x.id+to[x.id]]=1;
}
if(x.id-to[x.id]>=1&&!vis[x.id-to[x.id]])
{
q.push((node){x.id-to[x.id],x.step+1});
vis[x.id-to[x.id]]=1;
}
}
if(x.id==b) printf("%d",x.step);
else printf("-1");
return 0;
}