数独就要DLX,不然不乐意。
数独的DLX构造:9*9个点每个点有9种选择,这构成了DLX的729行,每行、列、阵有限制,均为9行(/列/阵),然后每行(/列/阵)都有九种数的情况,于是就有了3*9*9列,但是因为一个位置只能选一个,所以又有9*9列,每列连接一个点的九种选数情况。
最终有4*9*9=324列,9*9*9=729行。
处理:
有些点已经有数了,但是这并不重要,我们只需要给这个点加上一个行,为它已经选的数,而不要把9种情况都加上,这样在有精确覆盖的情况下(即有解),第四部分的某列在纵向就只连接一个节点,显然这个节点是必选的,所以不会出错(当然你要是依然给这个有值节点在DLX中加9行的话,那我也没招,不要问我为什么错,好吧你不会这么傻吧?)。
而其它没有初始值的数独点,自然就加旧行了没疑问吧?
说一个跟空间复杂度相关的事,就是一行有且仅有4个节点,分别在行、列、阵、位置这四部分的列中,那么总节点数(不算辅助节点)就应该最多是729*4,而实际上标准数独都是有唯一解的,所以需要的节点将远远小于这个数。
再说说时间复杂度:因为我们可以为DLX加一个优化,就是每次选一个列中节点最少的列继续DLX的过程,所以我们虽然保留了已经有值的节点,但是实际上最开始就选择了它们,而若数独有解,这也是必定选择的,所以并不会出现因为层数过多而导致回溯过度而TLE的情况,也就是说它还是很快的。当然,强迫症神马的我也管不了,你要是乐意把已赋值点删掉我也不拦着,但不像上一篇代码了,你要这么写的话,我并不会给你提供代码支持。
其实这么写最重要的原因就是:代!码!好!写!
好吧,我把我好写好读的代码贴上来吧!提示:要读代码先看define!其实这道题的define很简单,并没有一些恶心人的for循环define,你要是觉得读着恶心一定是你的问题了。
贴代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 800
#define M 400
#define NN 5000
#define inf 0x3f3f3f3f
#define Li_Sdk 3
#define Gi_Sdk 9
#define Su_Sdk 81
using namespace std;
char TS[N];
struct DLX
{
int elist,eline;
int id[Gi_Sdk+1][Gi_Sdk+1][Gi_Sdk+1];
int eid[4][Gi_Sdk][Gi_Sdk];
bool map[M][N];
int U[NN],D[NN],L[NN],R[NN],C[NN],V[NN];
int H[N],T[M],cnt;
int ans[NN];
bool visit[M],vist[M];
inline void init()
{
int i,j,k,_i,_j;
for(i=1;i<=Gi_Sdk;i++)
for(j=1;j<=Gi_Sdk;j++)
for(k=1;k<=Gi_Sdk;k++)
id[i][j][k]=++eline;
for(i=1;i<=Gi_Sdk;i++)/*行*/
{
for(j=1;j<=Gi_Sdk;j++)/*数*/
{
int A=eid[0][i][j]=++elist;
for(k=1;k<=Gi_Sdk;k++)/*列*/
{
int B=id[i][k][j];
map[A][B]=1;
}
}
}
for(i=1;i<=Gi_Sdk;i++)/*列*/
{
for(j=1;j<=Gi_Sdk;j++)/*数*/
{
int A=eid[1][i][j]=++elist;
for(k=1;k<=Gi_Sdk;k++)/*行*/
{
int B=id[k][i][j];
map[A][B]=1;
}
}
}
for(i=0;i<Li_Sdk;i++)for(j=0;j<Li_Sdk;j++)/*九宫格*/
{
for(k=1;k<=Gi_Sdk;k++)/*数*/
{
int A=eid[2][i*Li_Sdk+j+1][k]=++elist;
for(_i=1;_i<=Li_Sdk;_i++)for(_j=1;_j<=Li_Sdk;_j++)/*格内点*/
{
int B=id[i*Li_Sdk+_i][j*Li_Sdk+_j][k];
map[A][B]=1;
}
}
}
for(i=1;i<=Gi_Sdk;i++)for(j=1;j<=Gi_Sdk;j++)/*点的位置*/
{
int A=eid[3][i][j]=++elist;
for(k=1;k<=Gi_Sdk;k++)/*点的9个数*/
{
int B=id[i][j][k];
map[A][B]=1;
}
}
/* for(j=1;j<=eline;j++)
{
for(i=1;i<=elist;i++)
{
printf("%d",map[i][j]);
}
puts("");
}
*/ /*本题的数独是正常数独,所以有以下固定信息。*/
/*合计eline即DLX的行有9*9*9=729行,即每个位置的九种数字选择。*/
/*合计elist即DLX的列有4*9*9=324列,即行、列、九宫格、位置的4种精确覆盖*/
}
inline void clear()
{
cnt=0;
memset(U,0,sizeof(U));
memset(D,0,sizeof(D));
memset(L,0,sizeof(L));
memset(R,0,sizeof(R));
memset(C,0,sizeof(C));
memset(H,0,sizeof(H));
memset(T,0,sizeof(T));
memset(ans,0,sizeof(ans));
memset(vist,0,sizeof(vist));
memset(visit,0,sizeof(visit));
}
inline void newnode(int x,int y)
{
C[++cnt]=y;V[cnt]=x;T[y]++;
if(!H[x])H[x]=L[cnt]=R[cnt]=cnt;
else L[cnt]=H[x],R[cnt]=R[H[x]];
R[H[x]]=L[R[H[x]]]=cnt,H[x]=cnt;
U[cnt]=U[y],D[cnt]=y;
U[y]=D[U[y]]=cnt;
}
inline void remove(int x)
{
for(int i=D[x];i!=x;i=D[i])
{
for(int j=R[i];j!=i;j=R[j])
{
U[D[j]]=U[j];
D[U[j]]=D[j];
T[C[j]]--;
}
}
L[R[x]]=L[x];
R[L[x]]=R[x];
}
inline void resume(int x)
{
for(int i=U[x];i!=x;i=U[i])
{
for(int j=L[i];j!=i;j=L[j])
{
U[D[j]]=j;
D[U[j]]=j;
T[C[j]]++;
}
}
L[R[x]]=x;
R[L[x]]=x;
}
inline void build()
{
clear();
int i,j,k;
cnt=4*Su_Sdk;
for(i=1;i<=cnt;i++)
{
U[i]=D[i]=i;
L[i]=L[0],R[i]=0;
L[0]=R[L[0]]=i;
}
for(i=0;i<Gi_Sdk;i++)for(j=0;j<Gi_Sdk;j++)
{
int get=i*Gi_Sdk+j;
int alp=TS[get]-'.';
if(!alp)
{
for(k=get*Gi_Sdk+1;k<=get*Gi_Sdk+Gi_Sdk;k++)
for(int temp=1;temp<=elist;temp++)
if(map[temp][k])newnode(k,temp);
}
else
{
k=get*Gi_Sdk+TS[get]-'0';
for(int temp=1;temp<=elist;temp++)
if(map[temp][k])newnode(k,temp);
}
}
}
inline bool dfs()
{
if(!R[0])return true;
int S=R[0],W=T[S],i,j;
for(i=R[S];i;i=R[i])if(T[i]<W)
{
W=T[i];
S=i;
}
remove(S);
for(i=D[S];i!=S;i=D[i])
{
ans[(V[i]-1)/9]=(V[i]-1)%9+1;
for(j=R[i];j!=i;j=R[j])remove(C[j]);
if(dfs())return true;
for(j=L[i];j!=i;j=L[j])resume(C[j]);
}
resume(S);
return false;
}
inline void ret(){for(int i=0;i<Su_Sdk;i++)printf("%d",ans[i]);}
}dlx;
int main()
{
// freopen("test.in","r",stdin);
// freopen("my.out","w",stdout);
int n,m;
dlx.init();
while(scanf("%s",TS),TS[0]!='e')
{
dlx.build();
dlx.dfs();
dlx.ret();
puts("");
}
// fclose(stdin);
// fclose(stdout);
return 0;
}