【POJ1815】Friendship 网络流最小割

题意:若干个人,然后给出s、t和连边矩阵,问最少搞死多少个人可以让s和t这两个(不可以被搞死)的人不连通。(还要字典序最小的方案)


题解:最小割,首先我们拆点,两部分流量为1来满足性质,然后连inf的联通边。

然后跑一遍就出来需要几个人了。

如果是inf就NO answer


然后我们从小到大枚举哪个人在最小割集里面,即把此人删掉再跑,看maxflow。

然后AC。


注意题意中说如果是需要杀人,第二行就输出这些人。

但是没说不需要时怎么办。


经过检测,输不输出空行都行,由此推测,没有这种情况。

代码:

#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 2000 // 网络图中点
#define G 1000000 // 网络图中边
#define inf 0x3f3f3f3f
using namespace std;
struct KSD
{
	int v,next,len;
}e[G];
int head[N],cnt;
void add(int u,int v,int len)
{
	cnt++;
	e[cnt].v=v;
	e[cnt].len=len;
	e[cnt].next=head[u];
	head[u]=cnt;
}
queue<int>q;
int d[N],s,t;
bool bfs()
{
	memset(d,0,sizeof(d));
	int i,u,v;
	while(!q.empty())q.pop();
	q.push(s),d[s]=1;
	while(!q.empty())
	{
		u=q.front(),q.pop();
		for(i=head[u];i;i=e[i].next)if(e[i].len)
		{
			v=e[i].v;
			if(!d[v])
			{
				d[v]=d[u]+1;
				if(v==t)
					return 1;
				q.push(v);
			}
		}
	}
	return 0;
}
int dinic(int x,int flow)
{
	if(x==t)return flow;
	int remain=flow,k;
	int i,v;
	for(i=head[x];i&&remain;i=e[i].next)
	{
		v=e[i].v;
		if(e[i].len&&d[v]==d[x]+1)
		{
			k=dinic(v,min(remain,e[i].len));
			if(!k)d[v]=0;
			e[i^1].len+=k,e[i].len-=k;
			remain-=k;
		}
	}
	return flow-remain;
}
int n,m,p,maxflow;
int S,T,ans;
int map[1005][1005];
bool vis[N];
void build()
{
	int i,j;
	cnt=1;
	memset(head,0,sizeof(head));
	for(i=1;i<=n;i++)if(!vis[i])add(i,i+n,1),add(i+n,i,0);
	for(i=1;i<=n;i++)if(!vis[i])for(j=1;j<=n;j++)if(!vis[j])
	{
		if(i==j)continue;
		if(map[i][j])add(i+n,j,inf),add(j,i+n,0);
	}
}
bool work()
{
	if(scanf("%d%d%d",&n,&S,&T)==EOF)return 0;
	int i,j,k,flag=0;
	s=S+n,t=T;
	for(i=1;i<=n;i++)for(j=1;j<=n;j++)scanf("%d",&map[i][j]);
	build();
	ans=0;
	while(bfs())
	{
		k=dinic(s,inf);
		if(k==inf){puts("NO ANSWER!");return 1;}
		else ans+=k;
	}
	printf("%d\n",ans);
	if(ans)flag=1;
	for(i=1;i<=n;i++)if(i!=S&&i!=T)
	{
		vis[i]=1;
		build();
		maxflow=0;
		while(bfs())maxflow+=dinic(s,inf);
		if(maxflow<ans)printf("%d ",i),ans=maxflow;
		else vis[i]=0;
	}
	puts("");
	return 1;
}
int main()
{
	freopen("test.in","r",stdin);
	while(work());
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值