题意:若干个人,然后给出s、t和连边矩阵,问最少搞死多少个人可以让s和t这两个(不可以被搞死)的人不连通。(还要字典序最小的方案)
题解:最小割,首先我们拆点,两部分流量为1来满足性质,然后连inf的联通边。
然后跑一遍就出来需要几个人了。
如果是inf就NO answer
然后我们从小到大枚举哪个人在最小割集里面,即把此人删掉再跑,看maxflow。
然后AC。
注意题意中说如果是需要杀人,第二行就输出这些人。
但是没说不需要时怎么办。
经过检测,输不输出空行都行,由此推测,没有这种情况。
代码:
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 2000 // 网络图中点
#define G 1000000 // 网络图中边
#define inf 0x3f3f3f3f
using namespace std;
struct KSD
{
int v,next,len;
}e[G];
int head[N],cnt;
void add(int u,int v,int len)
{
cnt++;
e[cnt].v=v;
e[cnt].len=len;
e[cnt].next=head[u];
head[u]=cnt;
}
queue<int>q;
int d[N],s,t;
bool bfs()
{
memset(d,0,sizeof(d));
int i,u,v;
while(!q.empty())q.pop();
q.push(s),d[s]=1;
while(!q.empty())
{
u=q.front(),q.pop();
for(i=head[u];i;i=e[i].next)if(e[i].len)
{
v=e[i].v;
if(!d[v])
{
d[v]=d[u]+1;
if(v==t)
return 1;
q.push(v);
}
}
}
return 0;
}
int dinic(int x,int flow)
{
if(x==t)return flow;
int remain=flow,k;
int i,v;
for(i=head[x];i&&remain;i=e[i].next)
{
v=e[i].v;
if(e[i].len&&d[v]==d[x]+1)
{
k=dinic(v,min(remain,e[i].len));
if(!k)d[v]=0;
e[i^1].len+=k,e[i].len-=k;
remain-=k;
}
}
return flow-remain;
}
int n,m,p,maxflow;
int S,T,ans;
int map[1005][1005];
bool vis[N];
void build()
{
int i,j;
cnt=1;
memset(head,0,sizeof(head));
for(i=1;i<=n;i++)if(!vis[i])add(i,i+n,1),add(i+n,i,0);
for(i=1;i<=n;i++)if(!vis[i])for(j=1;j<=n;j++)if(!vis[j])
{
if(i==j)continue;
if(map[i][j])add(i+n,j,inf),add(j,i+n,0);
}
}
bool work()
{
if(scanf("%d%d%d",&n,&S,&T)==EOF)return 0;
int i,j,k,flag=0;
s=S+n,t=T;
for(i=1;i<=n;i++)for(j=1;j<=n;j++)scanf("%d",&map[i][j]);
build();
ans=0;
while(bfs())
{
k=dinic(s,inf);
if(k==inf){puts("NO ANSWER!");return 1;}
else ans+=k;
}
printf("%d\n",ans);
if(ans)flag=1;
for(i=1;i<=n;i++)if(i!=S&&i!=T)
{
vis[i]=1;
build();
maxflow=0;
while(bfs())maxflow+=dinic(s,inf);
if(maxflow<ans)printf("%d ",i),ans=maxflow;
else vis[i]=0;
}
puts("");
return 1;
}
int main()
{
freopen("test.in","r",stdin);
while(work());
}