链接:
#include <stdio.h>
int main()
{
puts("转载请注明出处[vmurder]谢谢");
puts("网址:blog.csdn.net/vmurder/article/details/44542575");
}
哎一听这个题目名字就感觉好有趣。
题解:
(注意:下方的题解每一步如果,相当于你写个递归函数,每次求完了下一层的值才能求此层的。Wow略高能,)
首先我们整体上既然是求期望,那么我们如果能算出每条边的期望经过次数
wi
,那么只需要把1~m这些边权值从小到大按期望从大到小填入这些边,就可以得到最小的期望路径长度啦。
然后怎么求每条边的期望经过次数呢?
我们设边
i
的两端点为
wi=xudu+xvdv
然后每个点的期望经过次数怎么求呢?
一般情况下是这样的:
xi=∑exist an edge from j to ijxjdj
(
妈呀不要D我上面的脑残
其中点
1
固定经过一次,所以
然后因为进
n
就不出去了,所以
然后变成高斯消元的方程的形式,转移下几个项后,代码如下:
for(i=1;i<n;i++)a[i][i]=-1;
for(i=1;i<=m;i++)
{
a[U[i]][V[i]]+=1.0/d[V[i]];
a[V[i]][U[i]]+=1.0/d[U[i]];
}
for(i=1;i<=n;i++)a[n][i]=0;
a[1][n+1]=-1,a[n][n]=1;
算出
x
后回代到步骤二,算出
代码:
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 505
#define M 250000
using namespace std;
double a[N][N],x[N],w[M],ans;
void Gauss(int n,int m)
{
int i,j,k;
for(i=1;i<m;i++)
{
for(k=i,j=i+1;j<=n;j++)if(fabs(a[k][i])<fabs(a[j][i]))k=j;
if(i!=k)for(j=i;j<=m;j++)swap(a[i][j],a[k][j]);
for(j=i+1;j<=n;j++)
{
double rate=a[j][i]/a[i][i];
for(k=i;k<=m;k++)a[j][k]-=a[i][k]*rate;
}
}
for(i=m-1;i;i--)
{
for(j=i+1;j<m;j++)a[i][m]-=a[i][j]*x[j];
x[i]=a[i][m]/a[i][i];
}
}
int n,m;
int U[M],V[M],d[N];
int main()
{
int i;
scanf("%d%d",&n,&m);
for(i=1;i<=m;i++)
{
scanf("%d%d",&U[i],&V[i]);
d[U[i]]++,d[V[i]]++;
}
for(i=1;i<n;i++)a[i][i]=-1;
for(i=1;i<=m;i++)
{
a[U[i]][V[i]]+=1.0/d[V[i]];
a[V[i]][U[i]]+=1.0/d[U[i]];
}
for(i=1;i<=n;i++)a[n][i]=0;
a[1][n+1]=-1,a[n][n]=1;
Gauss(n,n+1);
for(i=1;i<=m;i++)w[i]=x[U[i]]/d[U[i]]+x[V[i]]/d[V[i]];
sort(w+1,w+m+1);
for(i=1;i<=m;i++)ans+=(m-i+1)*w[i];
printf("%.3lf\n",ans);
return 0;
}