基于PyTorch和注意力机制的时间序列预测
时间序列预测是一项重要的任务,可以应用于多个领域,例如天气预测、股票预测等。在本文中,我们将使用PyTorch和注意力机制来实现天气变化的时间序列预测模型。
首先,我们需要准备数据。我们假设我们有一系列天气观测数据,每个观测点包含日期和相关的天气信息,如气温、湿度等。我们的目标是根据过去的观测数据来预测未来的天气变化。
接下来,我们将使用PyTorch来构建我们的时间序列预测模型。我们将使用循环神经网络(RNN)作为基本模型,并添加注意力机制来提高模型的预测性能。
首先,让我们导入所需的库:
import torch
import torch.nn as nn
import torch.optim as optim
import numpy