机器学习笔记--常见算法(7)--牛顿法

本文来自:https://blog.csdn.net/qq_36330643/article/details/78003952
在第2部分求最优化的地方做了更改。

牛顿法有两个应用方向:
1.求方程的根
2.最优化

1.求方程的根
并不是所有的方程都有求根公式,或者求根公式很复杂,导致求解困难。利用牛顿法,可以迭代求解。

原理是利用泰勒公式,在x0处展开,且展开到一阶,即f(x) = f(x0)+(x-x0)f’(x0)

求解方程f(x)=0,即f(x0)+(x-x0)f’(x0)=0,求解x = x1=x0-f(x0)/f’(x0),因为这是利用泰勒公式的一阶展开,f(x) = f(x0)+(x-x0)f’(x0)处并不是完全相等,而是近似相等,这里求得的x1并不能让f(x)=0,只能说f(x1)的值比f(x0)更接近f(x)=0,于是乎,迭代求解的想法就很自然了,可以进而推出x(n+1)=x(n)-f(x(n))/f’(x(n)),通过迭代,这个式子必然在f(x)=0的时候收敛。整个过程如下图:
在这里插入图片描述
2.牛顿法用于最优化
在最优化的问题中,线性最优化至少可以使用单纯行法求解,但对于非线性优化问题,牛顿法提供了一种求解的办法。假设任务是优化一个目标函数f,求函数f的极大极小问题,可以转化为求解函数f的导数f’=0的问题,这样求可以把优化问题看成方程求解问题(f’=0)。剩下的问题就和第一部分提到的牛顿法求解很相似了。
为了求解 f ′ = 0 f'=0 f=0的根,把 f ( x ) f(x) f(x)泰勒展开,展开至2阶形式:
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 f ′ ′ ( x 0 ) ( x − x 0 ) 2 f(x) = f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2}f''(x_0)(x-x_0)^2 f(x)=f(x0)+f(x0)(xx0)+21f(x0)(xx0)2
对上式求导,并令 f ′ ( x ) = 0 f'(x)=0 f(x)=0,得到:
f ′ ( x 0 ) + f ′ ′ ( x 0 ) ( x − x 0 ) = 0 f'(x_0)+f''(x_0)(x-x_0)=0 f(x0)+f(x0)(xx0)=0
即:
x = x 0 − f ′ ( x 0 ) f ′ ′ ( x 0 ) x=x_0-\frac{f'(x_0)}{f''(x_0)} x=x0f(x0)f(x0)
得到迭代公式:
x n + 1 = x n − f ′ ( x n ) f ′ ′ ( x n ) x_{n+1}=x_n-\frac{f'(x_n)}{f''(x_n)} xn+1=xnf(xn)f(xn)

一般认为牛顿法可以利用到曲线本身的信息,比梯度下降法更容易收敛(迭代更少次数),如下图是一个最小化一个目标方程的例子,红色曲线是利用牛顿法迭代求解,绿色曲线是利用梯度下降法求解。
在这里插入图片描述

在上面讨论的是2维情况,高维情况的牛顿迭代公式是:
在这里插入图片描述
其中H是hessian矩阵,定义为:
在这里插入图片描述
高维情况依然可以用牛顿迭代求解,但是问题是Hessian矩阵引入的复杂性,使得牛顿迭代求解的难度大大增加,但是已经有了解决这个问题的办法就是Quasi-Newton methond,不再直接计算hessian矩阵,而是每一步的时候使用梯度向量更新hessian矩阵的近似。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值